// // Lol Engine // // Copyright: (c) 2010-2012 Sam Hocevar <sam@hocevar.net> // This program is free software; you can redistribute it and/or // modify it under the terms of the Do What The Fuck You Want To // Public License, Version 2, as published by Sam Hocevar. See // http://sam.zoy.org/projects/COPYING.WTFPL for more details. // #if defined HAVE_CONFIG_H # include "config.h" #endif #if defined _XBOX # define _USE_MATH_DEFINES /* for M_PI */ # include <xtl.h> # undef near /* Fuck Microsoft */ # undef far /* Fuck Microsoft again */ #elif defined _WIN32 # define _USE_MATH_DEFINES /* for M_PI */ # define WIN32_LEAN_AND_MEAN # include <windows.h> # undef near /* Fuck Microsoft */ # undef far /* Fuck Microsoft again */ #endif #include <cmath> /* for M_PI */ #include <cstdlib> /* free() */ #include <cstring> /* strdup() */ #include "core.h" using namespace std; namespace lol { static inline float det3(float a, float b, float c, float d, float e, float f, float g, float h, float i) { return a * (e * i - h * f) + b * (f * g - i * d) + c * (d * h - g * e); } static inline float cofact3(mat4 const &mat, int i, int j) { return det3(mat[(i + 1) & 3][(j + 1) & 3], mat[(i + 2) & 3][(j + 1) & 3], mat[(i + 3) & 3][(j + 1) & 3], mat[(i + 1) & 3][(j + 2) & 3], mat[(i + 2) & 3][(j + 2) & 3], mat[(i + 3) & 3][(j + 2) & 3], mat[(i + 1) & 3][(j + 3) & 3], mat[(i + 2) & 3][(j + 3) & 3], mat[(i + 3) & 3][(j + 3) & 3]) * (((i + j) & 1) ? -1.0f : 1.0f); } template<> float mat4::det() const { float ret = 0; for (int n = 0; n < 4; n++) ret += (*this)[n][0] * cofact3(*this, n, 0); return ret; } template<> mat4 mat4::invert() const { mat4 ret; float d = det(); if (d) { d = 1.0f / d; for (int j = 0; j < 4; j++) for (int i = 0; i < 4; i++) ret[j][i] = cofact3(*this, i, j) * d; } return ret; } template<> void vec2::printf() const { Log::Debug("[ %6.6f %6.6f ]\n", x, y); } template<> void ivec2::printf() const { Log::Debug("[ %i %i ]\n", x, y); } template<> void cmplx::printf() const { Log::Debug("[ %6.6f %6.6f ]\n", x, y); } template<> void vec3::printf() const { Log::Debug("[ %6.6f %6.6f %6.6f ]\n", x, y, z); } template<> void ivec3::printf() const { Log::Debug("[ %i %i %i ]\n", x, y, z); } template<> void vec4::printf() const { Log::Debug("[ %6.6f %6.6f %6.6f %6.6f ]\n", x, y, z, w); } template<> void ivec4::printf() const { Log::Debug("[ %i %i %i %i ]\n", x, y, z, w); } template<> void quat::printf() const { Log::Debug("[ %6.6f %6.6f %6.6f %6.6f ]\n", x, y, z, w); } template<> void mat4::printf() const { mat4 const &p = *this; Log::Debug("[ %6.6f %6.6f %6.6f %6.6f\n", p[0][0], p[1][0], p[2][0], p[3][0]); Log::Debug(" %6.6f %6.6f %6.6f %6.6f\n", p[0][1], p[1][1], p[2][1], p[3][1]); Log::Debug(" %6.6f %6.6f %6.6f %6.6f\n", p[0][2], p[1][2], p[2][2], p[3][2]); Log::Debug(" %6.6f %6.6f %6.6f %6.6f ]\n", p[0][3], p[1][3], p[2][3], p[3][3]); } #if !defined __ANDROID__ template<> std::ostream &operator<<(std::ostream &stream, ivec2 const &v) { return stream << "(" << v.x << ", " << v.y << ")"; } template<> std::ostream &operator<<(std::ostream &stream, icmplx const &v) { return stream << "(" << v.x << ", " << v.y << ")"; } template<> std::ostream &operator<<(std::ostream &stream, ivec3 const &v) { return stream << "(" << v.x << ", " << v.y << ", " << v.z << ")"; } template<> std::ostream &operator<<(std::ostream &stream, ivec4 const &v) { return stream << "(" << v.x << ", " << v.y << ", " << v.z << ", " << v.w << ")"; } template<> std::ostream &operator<<(std::ostream &stream, iquat const &v) { return stream << "(" << v.x << ", " << v.y << ", " << v.z << ", " << v.w << ")"; } template<> std::ostream &operator<<(std::ostream &stream, vec2 const &v) { return stream << "(" << v.x << ", " << v.y << ")"; } template<> std::ostream &operator<<(std::ostream &stream, cmplx const &v) { return stream << "(" << v.x << ", " << v.y << ")"; } template<> std::ostream &operator<<(std::ostream &stream, vec3 const &v) { return stream << "(" << v.x << ", " << v.y << ", " << v.z << ")"; } template<> std::ostream &operator<<(std::ostream &stream, vec4 const &v) { return stream << "(" << v.x << ", " << v.y << ", " << v.z << ", " << v.w << ")"; } template<> std::ostream &operator<<(std::ostream &stream, quat const &v) { return stream << "(" << v.x << ", " << v.y << ", " << v.z << ", " << v.w << ")"; } template<> std::ostream &operator<<(std::ostream &stream, mat4 const &m) { stream << "((" << m[0][0] << ", " << m[1][0] << ", " << m[2][0] << ", " << m[3][0] << "), "; stream << "(" << m[0][1] << ", " << m[1][1] << ", " << m[2][1] << ", " << m[3][1] << "), "; stream << "(" << m[0][2] << ", " << m[1][2] << ", " << m[2][2] << ", " << m[3][2] << "), "; stream << "(" << m[0][3] << ", " << m[1][3] << ", " << m[2][3] << ", " << m[3][3] << "))"; return stream; } #endif template<> mat4 mat4::translate(float x, float y, float z) { mat4 ret(1.0f); ret[3][0] = x; ret[3][1] = y; ret[3][2] = z; return ret; } template<> mat4 mat4::translate(vec3 v) { return translate(v.x, v.y, v.z); } template<> mat4 mat4::rotate(float angle, float x, float y, float z) { angle *= (M_PI / 180.0f); float st = sinf(angle); float ct = cosf(angle); float len = sqrtf(x * x + y * y + z * z); float invlen = len ? 1.0f / len : 0.0f; x *= invlen; y *= invlen; z *= invlen; float mtx = (1.0f - ct) * x; float mty = (1.0f - ct) * y; float mtz = (1.0f - ct) * z; mat4 ret(1.0f); ret[0][0] = x * mtx + ct; ret[0][1] = x * mty + st * z; ret[0][2] = x * mtz - st * y; ret[1][0] = y * mtx - st * z; ret[1][1] = y * mty + ct; ret[1][2] = y * mtz + st * x; ret[2][0] = z * mtx + st * y; ret[2][1] = z * mty - st * x; ret[2][2] = z * mtz + ct; return ret; } template<> mat4 mat4::rotate(float angle, vec3 v) { return rotate(angle, v.x, v.y, v.z); } template<> mat4 mat4::rotate(quat q) { mat4 ret(1.0f); float n = norm(q); if (!n) return ret; float s = 2.0f / n; ret[0][0] = 1.0f - s * (q.y * q.y + q.z * q.z); ret[0][1] = s * (q.x * q.y - q.z * q.w); ret[0][2] = s * (q.x * q.z + q.y * q.w); ret[1][0] = s * (q.x * q.y + q.z * q.w); ret[1][1] = 1.0f - s * (q.z * q.z + q.x * q.x); ret[1][2] = s * (q.y * q.z - q.x * q.w); ret[2][0] = s * (q.x * q.z - q.y * q.w); ret[2][1] = s * (q.y * q.z + q.x * q.w); ret[2][2] = 1.0f - s * (q.x * q.x + q.y * q.y); return ret; } template<> quat::Quat(mat4 const &m) { /* See http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/christian.htm for a version with no branches */ float t = m[0][0] + m[1][1] + m[2][2]; if (t > 0) { w = 0.5f * sqrtf(1.0f + t); float s = 0.25f / w; x = s * (m[2][1] - m[1][2]); y = s * (m[0][2] - m[2][0]); z = s * (m[1][0] - m[0][1]); } else if (m[0][0] > m[1][1] && m[0][0] > m[2][2]) { x = 0.5f * sqrtf(1.0f + m[0][0] - m[1][1] - m[2][2]); float s = 0.25f / x; y = s * (m[1][0] + m[0][1]); z = s * (m[0][2] + m[2][0]); w = s * (m[2][1] - m[1][2]); } else if (m[1][1] > m[2][2]) { y = 0.5f * sqrtf(1.0f - m[0][0] + m[1][1] - m[2][2]); float s = 0.25f / y; x = s * (m[1][0] + m[0][1]); z = s * (m[2][1] + m[1][2]); w = s * (m[0][2] - m[2][0]); } else { z = 0.5f * sqrtf(1.0f - m[0][0] - m[1][1] + m[2][2]); float s = 0.25f / z; x = s * (m[0][2] + m[2][0]); y = s * (m[2][1] + m[1][2]); w = s * (m[1][0] - m[0][1]); } } template<> mat4 mat4::lookat(vec3 eye, vec3 center, vec3 up) { vec3 v3 = normalize(eye - center); vec3 v2 = normalize(up); vec3 v1 = normalize(cross(v2, v3)); v2 = cross(v3, v1); mat4 orient(1.0f); orient[0][0] = v1.x; orient[0][1] = v2.x; orient[0][2] = v3.x; orient[1][0] = v1.y; orient[1][1] = v2.y; orient[1][2] = v3.y; orient[2][0] = v1.z; orient[2][1] = v2.z; orient[2][2] = v3.z; return orient * mat4::translate(-eye); } template<> mat4 mat4::ortho(float left, float right, float bottom, float top, float near, float far) { float invrl = (right != left) ? 1.0f / (right - left) : 0.0f; float invtb = (top != bottom) ? 1.0f / (top - bottom) : 0.0f; float invfn = (far != near) ? 1.0f / (far - near) : 0.0f; mat4 ret(0.0f); ret[0][0] = 2.0f * invrl; ret[1][1] = 2.0f * invtb; ret[2][2] = -2.0f * invfn; ret[3][0] = - (right + left) * invrl; ret[3][1] = - (top + bottom) * invtb; ret[3][2] = - (far + near) * invfn; ret[3][3] = 1.0f; return ret; } template<> mat4 mat4::frustum(float left, float right, float bottom, float top, float near, float far) { float invrl = (right != left) ? 1.0f / (right - left) : 0.0f; float invtb = (top != bottom) ? 1.0f / (top - bottom) : 0.0f; float invfn = (far != near) ? 1.0f / (far - near) : 0.0f; mat4 ret(0.0f); ret[0][0] = 2.0f * near * invrl; ret[1][1] = 2.0f * near * invtb; ret[2][0] = (right + left) * invrl; ret[2][1] = (top + bottom) * invtb; ret[2][2] = - (far + near) * invfn; ret[2][3] = -1.0f; ret[3][2] = -2.0f * far * near * invfn; return ret; } template<> mat4 mat4::perspective(float fov_y, float width, float height, float near, float far) { fov_y *= (M_PI / 180.0f); float t2 = tanf(fov_y * 0.5f); float t1 = t2 * width / height; return frustum(-near * t1, near * t1, -near * t2, near * t2, near, far); } } /* namespace lol */