// // Lol Engine // // Copyright: (c) 2010-2013 Sam Hocevar <sam@hocevar.net> // This program is free software; you can redistribute it and/or // modify it under the terms of the Do What The Fuck You Want To // Public License, Version 2, as published by Sam Hocevar. See // http://www.wtfpl.net/ for more details. // #if defined HAVE_CONFIG_H # include "config.h" #endif #include <cstdlib> /* free() */ #include <cstring> /* strdup() */ #include <ostream> /* std::ostream */ #include "core.h" using namespace std; namespace lol { /* * Return the determinant of a 2×2 matrix. */ static inline float det2(float a, float b, float c, float d) { return a * d - b * c; } /* * Return the determinant of a 3×3 matrix. */ static inline float det3(float a, float b, float c, float d, float e, float f, float g, float h, float i) { return a * (e * i - h * f) + b * (f * g - i * d) + c * (d * h - g * e); } /* * Return the cofactor of the (i,j) entry in a 2×2 matrix. */ static inline float cofact(mat2 const &mat, int i, int j) { float tmp = mat[(i + 1) & 1][(j + 1) & 1]; return ((i + j) & 1) ? -tmp : tmp; } /* * Return the cofactor of the (i,j) entry in a 3×3 matrix. */ static inline float cofact(mat3 const &mat, int i, int j) { return det2(mat[(i + 1) % 3][(j + 1) % 3], mat[(i + 2) % 3][(j + 1) % 3], mat[(i + 1) % 3][(j + 2) % 3], mat[(i + 2) % 3][(j + 2) % 3]); } /* * Return the cofactor of the (i,j) entry in a 4×4 matrix. */ static inline float cofact(mat4 const &mat, int i, int j) { return det3(mat[(i + 1) & 3][(j + 1) & 3], mat[(i + 2) & 3][(j + 1) & 3], mat[(i + 3) & 3][(j + 1) & 3], mat[(i + 1) & 3][(j + 2) & 3], mat[(i + 2) & 3][(j + 2) & 3], mat[(i + 3) & 3][(j + 2) & 3], mat[(i + 1) & 3][(j + 3) & 3], mat[(i + 2) & 3][(j + 3) & 3], mat[(i + 3) & 3][(j + 3) & 3]) * (((i + j) & 1) ? -1.0f : 1.0f); } template<> float determinant(mat2 const &mat) { return det2(mat[0][0], mat[0][1], mat[1][0], mat[1][1]); } template<> mat2 transpose(mat2 const &mat) { mat2 ret; for (int j = 0; j < 2; j++) for (int i = 0; i < 2; i++) ret[j][i] = mat[i][j]; return ret; } template<> mat2 inverse(mat2 const &mat) { mat2 ret; float d = determinant(mat); if (d) { d = 1.0f / d; for (int j = 0; j < 2; j++) for (int i = 0; i < 2; i++) ret[j][i] = cofact(mat, i, j) * d; } return ret; } template<> float determinant(mat3 const &mat) { return det3(mat[0][0], mat[0][1], mat[0][2], mat[1][0], mat[1][1], mat[1][2], mat[2][0], mat[2][1], mat[2][2]); } template<> mat3 transpose(mat3 const &mat) { mat3 ret; for (int j = 0; j < 3; j++) for (int i = 0; i < 3; i++) ret[j][i] = mat[i][j]; return ret; } template<> mat3 inverse(mat3 const &mat) { mat3 ret; float d = determinant(mat); if (d) { d = 1.0f / d; for (int j = 0; j < 3; j++) for (int i = 0; i < 3; i++) ret[j][i] = cofact(mat, i, j) * d; } return ret; } template<> float determinant(mat4 const &mat) { float ret = 0; for (int n = 0; n < 4; n++) ret += mat[n][0] * cofact(mat, n, 0); return ret; } template<> mat4 transpose(mat4 const &mat) { mat4 ret; for (int j = 0; j < 4; j++) for (int i = 0; i < 4; i++) ret[j][i] = mat[i][j]; return ret; } template<> mat4 inverse(mat4 const &mat) { mat4 ret; float d = determinant(mat); if (d) { d = 1.0f / d; for (int j = 0; j < 4; j++) for (int i = 0; i < 4; i++) ret[j][i] = cofact(mat, i, j) * d; } return ret; } template<> void vec2::printf() const { Log::Debug("[ %6.6f %6.6f ]\n", x, y); } template<> void ivec2::printf() const { Log::Debug("[ %i %i ]\n", x, y); } template<> void cmplx::printf() const { Log::Debug("[ %6.6f %6.6f ]\n", x, y); } template<> void vec3::printf() const { Log::Debug("[ %6.6f %6.6f %6.6f ]\n", x, y, z); } template<> void ivec3::printf() const { Log::Debug("[ %i %i %i ]\n", x, y, z); } template<> void vec4::printf() const { Log::Debug("[ %6.6f %6.6f %6.6f %6.6f ]\n", x, y, z, w); } template<> void ivec4::printf() const { Log::Debug("[ %i %i %i %i ]\n", x, y, z, w); } template<> void quat::printf() const { Log::Debug("[ %6.6f %6.6f %6.6f %6.6f ]\n", w, x, y, z); } template<> void mat2::printf() const { mat2 const &p = *this; Log::Debug("[ %6.6f %6.6f\n", p[0][0], p[1][0]); Log::Debug(" %6.6f %6.6f ]\n", p[0][1], p[1][1]); } template<> void mat3::printf() const { mat3 const &p = *this; Log::Debug("[ %6.6f %6.6f %6.6f\n", p[0][0], p[1][0], p[2][0]); Log::Debug(" %6.6f %6.6f %6.6f\n", p[0][1], p[1][1], p[2][1]); Log::Debug(" %6.6f %6.6f %6.6f ]\n", p[0][2], p[1][2], p[2][2]); } template<> void mat4::printf() const { mat4 const &p = *this; Log::Debug("[ %6.6f %6.6f %6.6f %6.6f\n", p[0][0], p[1][0], p[2][0], p[3][0]); Log::Debug(" %6.6f %6.6f %6.6f %6.6f\n", p[0][1], p[1][1], p[2][1], p[3][1]); Log::Debug(" %6.6f %6.6f %6.6f %6.6f\n", p[0][2], p[1][2], p[2][2], p[3][2]); Log::Debug(" %6.6f %6.6f %6.6f %6.6f ]\n", p[0][3], p[1][3], p[2][3], p[3][3]); } template<> std::ostream &operator<<(std::ostream &stream, ivec2 const &v) { return stream << "(" << v.x << ", " << v.y << ")"; } template<> std::ostream &operator<<(std::ostream &stream, icmplx const &v) { return stream << "(" << v.x << ", " << v.y << ")"; } template<> std::ostream &operator<<(std::ostream &stream, ivec3 const &v) { return stream << "(" << v.x << ", " << v.y << ", " << v.z << ")"; } template<> std::ostream &operator<<(std::ostream &stream, ivec4 const &v) { return stream << "(" << v.x << ", " << v.y << ", " << v.z << ", " << v.w << ")"; } template<> std::ostream &operator<<(std::ostream &stream, iquat const &v) { return stream << "(" << v.x << ", " << v.y << ", " << v.z << ", " << v.w << ")"; } template<> std::ostream &operator<<(std::ostream &stream, vec2 const &v) { return stream << "(" << v.x << ", " << v.y << ")"; } template<> std::ostream &operator<<(std::ostream &stream, cmplx const &v) { return stream << "(" << v.x << ", " << v.y << ")"; } template<> std::ostream &operator<<(std::ostream &stream, vec3 const &v) { return stream << "(" << v.x << ", " << v.y << ", " << v.z << ")"; } template<> std::ostream &operator<<(std::ostream &stream, vec4 const &v) { return stream << "(" << v.x << ", " << v.y << ", " << v.z << ", " << v.w << ")"; } template<> std::ostream &operator<<(std::ostream &stream, quat const &v) { return stream << "(" << v.x << ", " << v.y << ", " << v.z << ", " << v.w << ")"; } template<> std::ostream &operator<<(std::ostream &stream, mat4 const &m) { stream << "((" << m[0][0] << ", " << m[1][0] << ", " << m[2][0] << ", " << m[3][0] << "), "; stream << "(" << m[0][1] << ", " << m[1][1] << ", " << m[2][1] << ", " << m[3][1] << "), "; stream << "(" << m[0][2] << ", " << m[1][2] << ", " << m[2][2] << ", " << m[3][2] << "), "; stream << "(" << m[0][3] << ", " << m[1][3] << ", " << m[2][3] << ", " << m[3][3] << "))"; return stream; } template<> mat3 mat3::scale(float x) { mat3 ret(1.0f); ret[0][0] = x; ret[1][1] = x; ret[2][2] = x; return ret; } template<> mat3 mat3::scale(float x, float y, float z) { mat3 ret(1.0f); ret[0][0] = x; ret[1][1] = y; ret[2][2] = z; return ret; } template<> mat3 mat3::scale(vec3 v) { return scale(v.x, v.y, v.z); } template<> mat4 mat4::translate(float x, float y, float z) { mat4 ret(1.0f); ret[3][0] = x; ret[3][1] = y; ret[3][2] = z; return ret; } template<> mat4 mat4::translate(vec3 v) { return translate(v.x, v.y, v.z); } template<> mat2 mat2::rotate(float degrees) { degrees *= (F_PI / 180.0f); float st = sin(degrees); float ct = cos(degrees); mat2 ret; ret[0][0] = ct; ret[0][1] = st; ret[1][0] = -st; ret[1][1] = ct; return ret; } template<> mat3 mat3::rotate(float degrees, float x, float y, float z) { degrees *= (F_PI / 180.0f); float st = sin(degrees); float ct = cos(degrees); float len = std::sqrt(x * x + y * y + z * z); float invlen = len ? 1.0f / len : 0.0f; x *= invlen; y *= invlen; z *= invlen; float mtx = (1.0f - ct) * x; float mty = (1.0f - ct) * y; float mtz = (1.0f - ct) * z; mat3 ret; ret[0][0] = x * mtx + ct; ret[0][1] = x * mty + st * z; ret[0][2] = x * mtz - st * y; ret[1][0] = y * mtx - st * z; ret[1][1] = y * mty + ct; ret[1][2] = y * mtz + st * x; ret[2][0] = z * mtx + st * y; ret[2][1] = z * mty - st * x; ret[2][2] = z * mtz + ct; return ret; } template<> mat3 mat3::rotate(float degrees, vec3 v) { return rotate(degrees, v.x, v.y, v.z); } template<> mat3::Mat3(quat const &q) { float n = norm(q); if (!n) { for (int j = 0; j < 3; j++) for (int i = 0; i < 3; i++) (*this)[i][j] = (i == j) ? 1.f : 0.f; return; } float s = 2.0f / n; v0[0] = 1.0f - s * (q.y * q.y + q.z * q.z); v0[1] = s * (q.x * q.y + q.z * q.w); v0[2] = s * (q.x * q.z - q.y * q.w); v1[0] = s * (q.x * q.y - q.z * q.w); v1[1] = 1.0f - s * (q.z * q.z + q.x * q.x); v1[2] = s * (q.y * q.z + q.x * q.w); v2[0] = s * (q.x * q.z + q.y * q.w); v2[1] = s * (q.y * q.z - q.x * q.w); v2[2] = 1.0f - s * (q.x * q.x + q.y * q.y); } template<> mat4::Mat4(quat const &q) { *this = mat4(mat3(q), 1.f); } static inline void MatrixToQuat(quat &that, mat3 const &m) { /* See http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/christian.htm for a version with no branches */ float t = m[0][0] + m[1][1] + m[2][2]; if (t > 0) { that.w = 0.5f * std::sqrt(1.0f + t); float s = 0.25f / that.w; that.x = s * (m[1][2] - m[2][1]); that.y = s * (m[2][0] - m[0][2]); that.z = s * (m[0][1] - m[1][0]); } else if (m[0][0] > m[1][1] && m[0][0] > m[2][2]) { that.x = 0.5f * std::sqrt(1.0f + m[0][0] - m[1][1] - m[2][2]); float s = 0.25f / that.x; that.y = s * (m[0][1] + m[1][0]); that.z = s * (m[2][0] + m[0][2]); that.w = s * (m[1][2] - m[2][1]); } else if (m[1][1] > m[2][2]) { that.y = 0.5f * std::sqrt(1.0f - m[0][0] + m[1][1] - m[2][2]); float s = 0.25f / that.y; that.x = s * (m[0][1] + m[1][0]); that.z = s * (m[1][2] + m[2][1]); that.w = s * (m[2][0] - m[0][2]); } else { that.z = 0.5f * std::sqrt(1.0f - m[0][0] - m[1][1] + m[2][2]); float s = 0.25f / that.z; that.x = s * (m[2][0] + m[0][2]); that.y = s * (m[1][2] + m[2][1]); that.w = s * (m[0][1] - m[1][0]); } } template<> quat::Quat(mat3 const &m) { MatrixToQuat(*this, m); } template<> quat::Quat(mat4 const &m) { MatrixToQuat(*this, mat3(m)); } template<> quat quat::rotate(float degrees, vec3 const &v) { degrees *= (F_PI / 360.0f); vec3 tmp = normalize(v) * sin(degrees); return quat(cos(degrees), tmp.x, tmp.y, tmp.z); } template<> quat quat::rotate(float degrees, float x, float y, float z) { return quat::rotate(degrees, vec3(x, y, z)); } template<> quat quat::rotate(vec3 const &src, vec3 const &dst) { vec3 v = cross(src, dst); float d = dot(src, dst) + lol::sqrt(sqlength(src) * sqlength(dst)); return normalize(quat(d, v.x, v.y, v.z)); } template<> quat slerp(quat const &qa, quat const &qb, float f) { float const magnitude = lol::sqrt(sqlength(qa) * sqlength(qb)); float const product = lol::dot(qa, qb) / magnitude; /* If quaternions are equal or opposite, there is no need * to slerp anything, just return qa. */ if (std::abs(product) >= 1.0f) return qa; float const sign = (product < 0.0f) ? -1.0f : 1.0f; float const theta = lol::acos(sign * product); float const s1 = lol::sin(sign * f * theta); float const s0 = lol::sin((1.0f - f) * theta); /* This is the same as 1/sin(theta) */ float const d = 1.0f / lol::sqrt(1.f - product * product); return qa * (s0 * d) + qb * (s1 * d); } static inline vec3 quat_toeuler_generic(quat const &q, int i, int j, int k) { float n = norm(q); if (!n) return vec3(0.f); /* (2 + i - j) % 3 means x-y-z direct order; otherwise indirect */ float const sign = ((2 + i - j) % 3) ? 1.f : -1.f; vec3 ret; /* k == i means X-Y-X style Euler angles; otherwise we’re * actually handling X-Y-Z style Tait-Bryan angles. */ if (k == i) { k = 3 - i - j; ret[0] = atan2(q[1 + i] * q[1 + j] + sign * (q.w * q[1 + k]), q.w * q[1 + j] - sign * (q[1 + i] * q[1 + k])); ret[1] = acos(2.f * (sq(q.w) + sq(q[1 + i])) - 1.f); ret[2] = atan2(q[1 + i] * q[1 + j] - sign * (q.w * q[1 + k]), q.w * q[1 + j] + sign * (q[1 + i] * q[1 + k])); } else { ret[0] = atan2(2.f * (q.w * q[1 + i] - sign * (q[1 + j] * q[1 + k])), 1.f - 2.f * (sq(q[1 + i]) + sq(q[1 + j]))); ret[1] = asin(2.f * (q.w * q[1 + j] + sign * (q[1 + i] * q[1 + k]))); ret[2] = atan2(2.f * (q.w * q[1 + k] - sign * (q[1 + j] * q[1 + i])), 1.f - 2.f * (sq(q[1 + k]) + sq(q[1 + j]))); } return (180.0f / F_PI / n) * ret; } static inline mat3 mat3_fromeuler_generic(vec3 const &v, int i, int j, int k) { mat3 ret; vec3 const radians = (F_PI / 180.0f) * v; float const s0 = sin(radians[0]), c0 = cos(radians[0]); float const s1 = sin(radians[1]), c1 = cos(radians[1]); float const s2 = sin(radians[2]), c2 = cos(radians[2]); /* (2 + i - j) % 3 means x-y-z direct order; otherwise indirect */ float const sign = ((2 + i - j) % 3) ? 1.f : -1.f; /* k == i means X-Y-X style Euler angles; otherwise we’re * actually handling X-Y-Z style Tait-Bryan angles. */ if (k == i) { k = 3 - i - j; ret[i][i] = c1; ret[i][j] = s0 * s1; ret[i][k] = - sign * (c0 * s1); ret[j][i] = s1 * s2; ret[j][j] = c0 * c2 - s0 * c1 * s2; ret[j][k] = sign * (s0 * c2 + c0 * c1 * s2); ret[k][i] = sign * (s1 * c2); ret[k][j] = - sign * (c0 * s2 + s0 * c1 * c2); ret[k][k] = - s0 * s2 + c0 * c1 * c2; } else { ret[i][i] = c1 * c2; ret[i][j] = sign * (c0 * s2) + s0 * s1 * c2; ret[i][k] = s0 * s2 - sign * (c0 * s1 * c2); ret[j][i] = - sign * (c1 * s2); ret[j][j] = c0 * c2 - sign * (s0 * s1 * s2); ret[j][k] = sign * (s0 * c2) + c0 * s1 * s2; ret[k][i] = sign * s1; ret[k][j] = - sign * (s0 * c1); ret[k][k] = c0 * c1; } return ret; } static inline quat quat_fromeuler_generic(vec3 const &v, int i, int j, int k) { vec3 const half_angles = (F_PI / 360.0f) * v; float const s0 = sin(half_angles[0]), c0 = cos(half_angles[0]); float const s1 = sin(half_angles[1]), c1 = cos(half_angles[1]); float const s2 = sin(half_angles[2]), c2 = cos(half_angles[2]); quat ret; /* (2 + i - j) % 3 means x-y-z direct order; otherwise indirect */ float const sign = ((2 + i - j) % 3) ? 1.f : -1.f; /* k == i means X-Y-X style Euler angles; otherwise we’re * actually handling X-Y-Z style Tait-Bryan angles. */ if (k == i) { k = 3 - i - j; ret[0] = c1 * (c0 * c2 - s0 * s2); ret[1 + i] = c1 * (c0 * s2 + s0 * c2); ret[1 + j] = s1 * (c0 * c2 + s0 * s2); ret[1 + k] = sign * (s1 * (s0 * c2 - c0 * s2)); } else { ret[0] = c0 * c1 * c2 - sign * (s0 * s1 * s2); ret[1 + i] = s0 * c1 * c2 + sign * (c0 * s1 * s2); ret[1 + j] = c0 * s1 * c2 - sign * (s0 * c1 * s2); ret[1 + k] = c0 * c1 * s2 + sign * (s0 * s1 * c2); } return ret; } #define DEFINE_GENERIC_EULER_CONVERSIONS(name, i, j, k) \ /* Create quaternions from Euler angles */ \ template<> quat quat::fromeuler_##name(vec3 const &v) \ { \ return quat_fromeuler_generic(v, i, j, k); \ } \ \ template<> quat quat::fromeuler_##name(float phi, float theta, float psi) \ { \ return quat::fromeuler_##name(vec3(phi, theta, psi)); \ } \ \ /* Create 3×3 matrices from Euler angles */ \ template<> mat3 mat3::fromeuler_##name(vec3 const &v) \ { \ return mat3_fromeuler_generic(v, i, j, k); \ } \ \ template<> mat3 mat3::fromeuler_##name(float phi, float theta, float psi) \ { \ return mat3::fromeuler_##name(vec3(phi, theta, psi)); \ } \ \ /* Create 4×4 matrices from Euler angles */ \ template<> mat4 mat4::fromeuler_##name(vec3 const &v) \ { \ return mat4(mat3_fromeuler_generic(v, i, j, k), 1.f); \ } \ \ template<> mat4 mat4::fromeuler_##name(float phi, float theta, float psi) \ { \ return mat4::fromeuler_##name(vec3(phi, theta, psi)); \ } \ \ /* Retrieve Euler angles from a quaternion */ \ template<> vec3 vec3::toeuler_##name(quat const &q) \ { \ return quat_toeuler_generic(q, i, j, k); \ } DEFINE_GENERIC_EULER_CONVERSIONS(xyx, 0, 1, 0) DEFINE_GENERIC_EULER_CONVERSIONS(xzx, 0, 2, 0) DEFINE_GENERIC_EULER_CONVERSIONS(yxy, 1, 0, 1) DEFINE_GENERIC_EULER_CONVERSIONS(yzy, 1, 2, 1) DEFINE_GENERIC_EULER_CONVERSIONS(zxz, 2, 0, 2) DEFINE_GENERIC_EULER_CONVERSIONS(zyz, 2, 1, 2) DEFINE_GENERIC_EULER_CONVERSIONS(xyz, 0, 1, 2) DEFINE_GENERIC_EULER_CONVERSIONS(xzy, 0, 2, 1) DEFINE_GENERIC_EULER_CONVERSIONS(yxz, 1, 0, 2) DEFINE_GENERIC_EULER_CONVERSIONS(yzx, 1, 2, 0) DEFINE_GENERIC_EULER_CONVERSIONS(zxy, 2, 0, 1) DEFINE_GENERIC_EULER_CONVERSIONS(zyx, 2, 1, 0) #undef DEFINE_GENERIC_EULER_CONVERSIONS template<> mat4 mat4::lookat(vec3 eye, vec3 center, vec3 up) { vec3 v3 = normalize(eye - center); vec3 v2 = normalize(up); vec3 v1 = normalize(cross(v2, v3)); v2 = cross(v3, v1); mat4 orient(1.0f); orient[0][0] = v1.x; orient[0][1] = v2.x; orient[0][2] = v3.x; orient[1][0] = v1.y; orient[1][1] = v2.y; orient[1][2] = v3.y; orient[2][0] = v1.z; orient[2][1] = v2.z; orient[2][2] = v3.z; return orient * mat4::translate(-eye); } template<> mat4 mat4::ortho(float left, float right, float bottom, float top, float near, float far) { float invrl = (right != left) ? 1.0f / (right - left) : 0.0f; float invtb = (top != bottom) ? 1.0f / (top - bottom) : 0.0f; float invfn = (far != near) ? 1.0f / (far - near) : 0.0f; mat4 ret(0.0f); ret[0][0] = 2.0f * invrl; ret[1][1] = 2.0f * invtb; ret[2][2] = -2.0f * invfn; ret[3][0] = - (right + left) * invrl; ret[3][1] = - (top + bottom) * invtb; ret[3][2] = - (far + near) * invfn; ret[3][3] = 1.0f; return ret; } template<> mat4 mat4::ortho(float width, float height, float near, float far) { return mat4::ortho(-0.5f * width, 0.5f * width, -0.5f * height, 0.5f * height, near, far); } template<> mat4 mat4::frustum(float left, float right, float bottom, float top, float near, float far) { float invrl = (right != left) ? 1.0f / (right - left) : 0.0f; float invtb = (top != bottom) ? 1.0f / (top - bottom) : 0.0f; float invfn = (far != near) ? 1.0f / (far - near) : 0.0f; mat4 ret(0.0f); ret[0][0] = 2.0f * near * invrl; ret[1][1] = 2.0f * near * invtb; ret[2][0] = (right + left) * invrl; ret[2][1] = (top + bottom) * invtb; ret[2][2] = - (far + near) * invfn; ret[2][3] = -1.0f; ret[3][2] = -2.0f * far * near * invfn; return ret; } //Returns a standard perspective matrix template<> mat4 mat4::perspective(float fov_y, float width, float height, float near, float far) { fov_y *= (F_PI / 180.0f); float t2 = lol::tan(fov_y * 0.5f); float t1 = t2 * width / height; return frustum(-near * t1, near * t1, -near * t2, near * t2, near, far); } //Returns a perspective matrix with the camera location shifted to be on the near plane template<> mat4 mat4::shifted_perspective(float fov_y, float screen_size, float screen_ratio_yx, float near, float far) { float new_fov_y = fov_y * (F_PI / 180.0f); float dist_scr = (screen_size * screen_ratio_yx * .5f) / tanf(new_fov_y * .5f); return mat4::perspective(fov_y, screen_size, screen_size * screen_ratio_yx, max(.001f, dist_scr + near), max(.001f, dist_scr + far)) * mat4::translate(.0f, .0f, -dist_scr); } } /* namespace lol */