// // BtPhysTest // // Copyright: (c) 2009-2012 Benjamin Huet // (c) 2012 Sam Hocevar // #if defined HAVE_CONFIG_H # include "config.h" #endif #if defined _WIN32 # include #endif #if defined _XBOX # define _USE_MATH_DEFINES /* for M_PI */ # include # undef near /* Fuck Microsoft */ # undef far /* Fuck Microsoft again */ #elif defined _WIN32 # define _USE_MATH_DEFINES /* for M_PI */ # define WIN32_LEAN_AND_MEAN # include # undef near /* Fuck Microsoft */ # undef far /* Fuck Microsoft again */ #else # include #endif #if USE_SDL && defined __APPLE__ # include #endif #include #include #include "core.h" #include "loldebug.h" using namespace lol; #include "BtPhysTest.h" #define CUBE_HALF_EXTENTS .5f #define EXTRA_HEIGHT 1.f int gNumObjects = 64; BtPhysTest::BtPhysTest(bool editor) { /* Create a camera that matches the settings of XNA BtPhysTest */ m_camera = new Camera(vec3(0.f, 600.f, 0.f), vec3(0.f, 0.f, 0.f), vec3(0, 1, 0)); m_camera->SetRotation(quat::fromeuler_xyz(0.f, 0.f, 0.f)); m_camera->SetPerspective(90.f, 1280.f, 960.f, .1f, 1000.f); //m_camera->SetOrtho(1280.f / 6, 960.f / 6, -1000.f, 1000.f); Ticker::Ref(m_camera); m_ready = false; //init Physics { m_bt_ccd_mode = USE_CCD; //collision configuration contains default setup for memory, collision setup m_bt_collision_config = new btDefaultCollisionConfiguration(); //use the default collision dispatcher. For parallel processing you can use a diffent dispatcher (see Extras/BulletMultiThreaded) m_bt_dispatcher = new btCollisionDispatcher(m_bt_collision_config); m_bt_dispatcher->registerCollisionCreateFunc(BOX_SHAPE_PROXYTYPE,BOX_SHAPE_PROXYTYPE,m_bt_collision_config->getCollisionAlgorithmCreateFunc(CONVEX_SHAPE_PROXYTYPE,CONVEX_SHAPE_PROXYTYPE)); m_bt_broadphase = new btDbvtBroadphase(); ///the default constraint solver. For parallel processing you can use a different solver (see Extras/BulletMultiThreaded) m_bt_solver = new btSequentialImpulseConstraintSolver; m_bt_world = new btDiscreteDynamicsWorld(m_bt_dispatcher, m_bt_broadphase, m_bt_solver, m_bt_collision_config); //m_bt_world->setDebugDrawer(&sDebugDrawer); m_bt_world->getSolverInfo().m_splitImpulse = true; m_bt_world->getSolverInfo().m_numIterations = 20; m_bt_world->getDispatchInfo().m_useContinuous = (m_bt_ccd_mode == USE_CCD); m_bt_world->setGravity(btVector3(0,-10,0)); ///create a few basic rigid bodies btBoxShape* box = new btBoxShape(btVector3(btScalar(110.),btScalar(1.),btScalar(110.))); btCollisionShape* groundShape = box; m_bt_collision_shapes << groundShape; m_ground_mesh.Compile("[sc#ddd afcb110 1 110 -1]"); //m_bt_collision_shapes << new btCylinderShape(btVector3(.5f,.5f,.5f)); btTransform groundTransform; groundTransform.setIdentity(); //We can also use DemoApplication::localCreateRigidBody, but for clarity it is provided here: { btScalar mass(0.); //rigidbody is dynamic if and only if mass is non zero, otherwise static bool isDynamic = (mass != 0.f); btVector3 localInertia(0,0,0); if (isDynamic) groundShape->calculateLocalInertia(mass,localInertia); //using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform); btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,groundShape,localInertia); btRigidBody* body = new btRigidBody(rbInfo); //add the body to the dynamics world m_bt_world->addRigidBody(body); } //Adding Shapes { //create a few dynamic rigidbodies // Re-using the same collision is better for memory usage and performance btCollisionShape* colShape = new btBoxShape(btVector3(1,1,1)); m_rigid_mesh.Compile("[sc#ada afcb2 2 2 -.1]"); m_bt_collision_shapes << colShape; m_bt_dynamic_shapes << colShape; /// Create Dynamic Objects btTransform startTransform; startTransform.setIdentity(); btScalar mass(1.f); //rigidbody is dynamic if and only if mass is non zero, otherwise static bool isDynamic = (mass != 0.f); btVector3 localInertia(0,0,0); if (isDynamic) colShape->calculateLocalInertia(mass,localInertia); int i; for (i=0;i3) { col=11; row2 |=1; } btVector3 pos(col*2*CUBE_HALF_EXTENTS + (row2%2)*CUBE_HALF_EXTENTS, 20.0f + row*2*CUBE_HALF_EXTENTS+CUBE_HALF_EXTENTS+EXTRA_HEIGHT,0); trans.setOrigin(pos); float mass = 1.f; btAssert((!shape || shape->getShapeType() != INVALID_SHAPE_PROXYTYPE)); //rigidbody is dynamic if and only if mass is non zero, otherwise static bool isDynamic = (mass != 0.f); btVector3 localInertia(0,0,0); if (isDynamic) shape->calculateLocalInertia(mass,localInertia); //using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects btDefaultMotionState* myMotionState = new btDefaultMotionState(trans); btRigidBody::btRigidBodyConstructionInfo cInfo(mass,myMotionState,shape,localInertia); btRigidBody* body = new btRigidBody(cInfo); body->setContactProcessingThreshold(BT_LARGE_FLOAT); m_bt_world->addRigidBody(body); ///when using m_ccdMode if (m_bt_ccd_mode == USE_CCD) { body->setCcdMotionThreshold(CUBE_HALF_EXTENTS); body->setCcdSweptSphereRadius(0.9*CUBE_HALF_EXTENTS); } } } } } void BtPhysTest::TickGame(float seconds) { WorldEntity::TickGame(seconds); if (Input::GetButtonState(27 /*SDLK_ESCAPE*/)) Ticker::Shutdown(); ///step the simulation if (m_bt_world) { m_bt_world->stepSimulation(seconds); //optional but useful: debug drawing //m_bt_world->debugDrawWorld(); } } void BtPhysTest::TickDraw(float seconds) { WorldEntity::TickDraw(seconds); if (!m_ready) { m_ground_mesh.MeshConvert(); m_rigid_mesh.MeshConvert(); /* FIXME: this object never cleans up */ m_ready = true; } Video::SetClearColor(vec4(0.0f, 0.0f, 0.12f, 1.0f)); vec3 BarycenterLocation = vec3(.0f); float BarycenterFactor = 0.0f; for(int i=0;igetCollisionObjectArray()[i]; btRigidBody* body = btRigidBody::upcast(colObj); if(body && body->getMotionState()) { btDefaultMotionState* myMotionState = (btDefaultMotionState*)body->getMotionState(); myMotionState->m_graphicsWorldTrans.getOpenGLMatrix(&m[0][0]); rot = myMotionState->m_graphicsWorldTrans.getBasis(); } else { colObj->getWorldTransform().getOpenGLMatrix(&m[0][0]); rot = colObj->getWorldTransform().getBasis(); } if (i > 0) { BarycenterLocation += m.v3.xyz; BarycenterFactor += 1.0f; } if (i == 0) m_ground_mesh.Render(m); else m_rigid_mesh.Render(m); } if (BarycenterFactor > .0f) { BarycenterLocation /= BarycenterFactor; m_camera->SetTarget(BarycenterLocation); m_camera->SetPosition(BarycenterLocation + vec3(-20.0f, 5.0f, .0f)); } } BtPhysTest::~BtPhysTest() { Ticker::Unref(m_camera); //Exit Physics { //cleanup in the reverse order of creation/initialization //remove the rigidbodies from the dynamics world and delete them for (int i = m_bt_world->getNumCollisionObjects() - 1; i >= 0 ;i--) { btCollisionObject* obj = m_bt_world->getCollisionObjectArray()[i]; btRigidBody* body = btRigidBody::upcast(obj); if (body && body->getMotionState()) delete body->getMotionState(); m_bt_world->removeCollisionObject(obj); delete obj; } //delete collision shapes for (int j = 0; j < m_bt_collision_shapes.Count(); j++) { btCollisionShape* shape = m_bt_collision_shapes[j]; delete shape; } m_bt_collision_shapes.Empty(); delete m_bt_world; delete m_bt_solver; delete m_bt_broadphase; delete m_bt_dispatcher; delete m_bt_collision_config; } } int main(int argc, char **argv) { Application app("BtPhysTest", ivec2(800, 600), 60.0f); #if defined _MSC_VER && !defined _XBOX _chdir(".."); #elif defined _WIN32 && !defined _XBOX _chdir("../.."); #endif new BtPhysTest(argc > 1); app.ShowPointer(false); app.Run(); return EXIT_SUCCESS; }