// // Lol Engine // // Copyright: (c) 2010-2012 Sam Hocevar // (c) 2009-2012 Cédric Lecacheur // (c) 2009-2012 Benjamin Huet // This program is free software; you can redistribute it and/or // modify it under the terms of the Do What The Fuck You Want To // Public License, Version 2, as published by Sam Hocevar. See // http://sam.zoy.org/projects/COPYING.WTFPL for more details. // // // The EasyMesh class // ------------------ // #if defined HAVE_CONFIG_H # include "config.h" #endif #if defined _XBOX # define _USE_MATH_DEFINES /* for M_PI */ # include # undef near /* Fuck Microsoft */ # undef far /* Fuck Microsoft again */ #elif defined _WIN32 # define _USE_MATH_DEFINES /* for M_PI */ # define WIN32_LEAN_AND_MEAN # include # undef near /* Fuck Microsoft */ # undef far /* Fuck Microsoft again */ #endif #include "core.h" #include "easymesh/easymesh-compiler.h" extern char const *lolfx_shiny; namespace lol { EasyMesh::EasyMesh() : m_color(0), m_color2(0), m_ignore_winding_on_scale(0) { m_cursors.Push(0, 0); } bool EasyMesh::Compile(char const *command) { EasyMeshCompiler mc(*this); return mc.ParseString(command); } void EasyMesh::OpenBrace() { m_cursors.Push(m_vert.Count(), m_indices.Count()); } void EasyMesh::CloseBrace() { m_cursors.Pop(); } void EasyMesh::MeshConvert() { m_gpu.shader = Shader::Create(lolfx_shiny); m_gpu.modelview = m_gpu.shader->GetUniformLocation("in_ModelView"); m_gpu.view = m_gpu.shader->GetUniformLocation("in_View"); m_gpu.proj = m_gpu.shader->GetUniformLocation("in_Proj"); m_gpu.normalmat = m_gpu.shader->GetUniformLocation("in_NormalMat"); m_gpu.damage = m_gpu.shader->GetUniformLocation("in_Damage"); m_gpu.coord = m_gpu.shader->GetAttribLocation("in_Vertex", VertexUsage::Position, 0); m_gpu.norm = m_gpu.shader->GetAttribLocation("in_Normal", VertexUsage::Normal, 0); m_gpu.color = m_gpu.shader->GetAttribLocation("in_Color", VertexUsage::Color, 0); m_gpu.vdecl = new VertexDeclaration( VertexStream(VertexUsage::Position, VertexUsage::Normal, VertexUsage::Color)); Array vertexlist; for (int i = 0; i < m_vert.Count(); i++) vertexlist.Push(m_vert[i].m1, m_vert[i].m2, (u8vec4)(m_vert[i].m3 * 255.f)); Array indexlist; for (int i = 0; i < m_indices.Count(); i += 3) { indexlist << m_indices[i + 0]; indexlist << m_indices[i + 1]; indexlist << m_indices[i + 2]; } m_gpu.vbo = new VertexBuffer(vertexlist.Bytes()); void *mesh = m_gpu.vbo->Lock(0, 0); memcpy(mesh, &vertexlist[0], vertexlist.Bytes()); m_gpu.vbo->Unlock(); m_gpu.ibo = new IndexBuffer(indexlist.Bytes()); void *indices = m_gpu.ibo->Lock(0, 0); memcpy(indices, &indexlist[0], indexlist.Bytes()); m_gpu.ibo->Unlock(); m_gpu.vertexcount = vertexlist.Count(); m_gpu.indexcount = indexlist.Count(); } void EasyMesh::Render(mat4 const &model, float damage) { mat4 modelview = Scene::GetDefault()->GetViewMatrix() * model; mat3 normalmat = transpose(inverse(mat3(modelview))); m_gpu.shader->Bind(); m_gpu.shader->SetUniform(m_gpu.modelview, modelview); m_gpu.shader->SetUniform(m_gpu.view, Scene::GetDefault()->GetViewMatrix()); m_gpu.shader->SetUniform(m_gpu.proj, Scene::GetDefault()->GetProjMatrix()); m_gpu.shader->SetUniform(m_gpu.normalmat, normalmat); m_gpu.shader->SetUniform(m_gpu.damage, damage); m_gpu.vdecl->Bind(); m_gpu.vdecl->SetStream(m_gpu.vbo, m_gpu.coord, m_gpu.norm, m_gpu.color); m_gpu.ibo->Bind(); m_gpu.vdecl->DrawIndexedElements(MeshPrimitive::Triangles, 0, 0, m_gpu.vertexcount, 0, m_gpu.indexcount); m_gpu.ibo->Unbind(); m_gpu.vdecl->Unbind(); } void EasyMesh::ToggleScaleWinding() { m_ignore_winding_on_scale = !m_ignore_winding_on_scale; } void EasyMesh::SetCurColor(vec4 const &color) { m_color = color; } void EasyMesh::SetCurColor2(vec4 const &color) { m_color2 = color; } void EasyMesh::AddVertex(vec3 const &coord) { m_vert.Push(coord, vec3(0.f, 1.f, 0.f), m_color); } void EasyMesh::AddDuplicateVertex(int i) { m_vert.Push(m_vert[i].m1, vec3(0.f, 1.f, 0.f), m_vert[i].m3); } void EasyMesh::AppendQuad(int i1, int i2, int i3, int i4, int base) { m_indices << base + i1; m_indices << base + i2; m_indices << base + i3; m_indices << base + i4; m_indices << base + i1; m_indices << base + i3; } void EasyMesh::AppendQuadDuplicateVerts(int i1, int i2, int i3, int i4, int base) { m_indices << m_vert.Count(); AddDuplicateVertex(base + i1); m_indices << m_vert.Count(); AddDuplicateVertex(base + i2); m_indices << m_vert.Count(); AddDuplicateVertex(base + i3); m_indices << m_vert.Count(); AddDuplicateVertex(base + i4); m_indices << m_vert.Count(); AddDuplicateVertex(base + i1); m_indices << m_vert.Count(); AddDuplicateVertex(base + i3); } void EasyMesh::AppendTriangle(int i1, int i2, int i3, int base) { m_indices << base + i1; m_indices << base + i2; m_indices << base + i3; } void EasyMesh::AppendTriangleDuplicateVerts(int i1, int i2, int i3, int base) { m_indices << m_vert.Count(); AddDuplicateVertex(base + i1); m_indices << m_vert.Count(); AddDuplicateVertex(base + i2); m_indices << m_vert.Count(); AddDuplicateVertex(base + i3); } void EasyMesh::ComputeNormals(int start, int vcount) { for (int i = 0; i < vcount; i += 3) { vec3 v0 = m_vert[m_indices[start + i + 2]].m1 - m_vert[m_indices[start + i + 0]].m1; vec3 v1 = m_vert[m_indices[start + i + 1]].m1 - m_vert[m_indices[start + i + 0]].m1; vec3 n = normalize(cross(v1, v0)); for (int j = 0; j < 3; j++) m_vert[m_indices[start + i + j]].m2 = n; } } void EasyMesh::SetVertColor(vec4 const &color) { for (int i = m_cursors.Last().m1; i < m_vert.Count(); i++) m_vert[i].m3 = color; } void EasyMesh::SetCurVertNormal(vec3 const &normal) { m_vert[m_vert.Count() - 1].m2 = normal; } void EasyMesh::SetCurVertColor(vec4 const &color) { m_vert[m_vert.Count() - 1].m3 = color; } void EasyMesh::Translate(vec3 const &v) { for (int i = m_cursors.Last().m1; i < m_vert.Count(); i++) m_vert[i].m1 += v; } void EasyMesh::RotateX(float t) { Rotate(t, vec3(1, 0, 0)); } void EasyMesh::RotateY(float t) { Rotate(t, vec3(0, 1, 0)); } void EasyMesh::RotateZ(float t) { Rotate(t, vec3(0, 0, 1)); } void EasyMesh::Rotate(float t, vec3 const &axis) { mat3 m = mat3::rotate(t, axis); for (int i = m_cursors.Last().m1; i < m_vert.Count(); i++) { m_vert[i].m1 = m * m_vert[i].m1; m_vert[i].m2 = m * m_vert[i].m2; } } void EasyMesh::RadialJitter(float r) { Array Welded; Welded.Push(-1); for (int i = m_cursors.Last().m1 + 1; i < m_vert.Count(); i++) { int j, k; for (j = m_cursors.Last().m1, k = 0; j < i; j++, k++) { if(Welded[k] < 0) { vec3 diff = m_vert[i].m1 - m_vert[j].m1; if(diff.x > 0.1f || diff.x < -0.1f) continue; if(diff.y > 0.1f || diff.y < -0.1f) continue; if(diff.z > 0.1f || diff.z < -0.1f) continue; break; } } if(j == i) Welded.Push(-1); else Welded.Push(j); } int i, j; for (i = m_cursors.Last().m1, j = 0; i < m_vert.Count(); i++, j++) { if(Welded[j] == -1) m_vert[i].m1 *= 1.0f + RandF(r); else m_vert[i].m1 = m_vert[Welded[j]].m1; } ComputeNormals(m_cursors.Last().m2, m_indices.Count() - m_cursors.Last().m2); } void EasyMesh::TaperX(float y, float z, float xoff) { /* FIXME: this code breaks normals! */ for (int i = m_cursors.Last().m1; i < m_vert.Count(); i++) { m_vert[i].m1.y *= 1.f + (y * m_vert[i].m1.x + xoff); m_vert[i].m1.z *= 1.f + (z * m_vert[i].m1.x + xoff); } } void EasyMesh::TaperY(float x, float z, float yoff) { for (int i = m_cursors.Last().m1; i < m_vert.Count(); i++) { m_vert[i].m1.x *= 1.f + (x * m_vert[i].m1.y + yoff); m_vert[i].m1.z *= 1.f + (z * m_vert[i].m1.y + yoff); } } void EasyMesh::TaperZ(float x, float y, float zoff) { for (int i = m_cursors.Last().m1; i < m_vert.Count(); i++) { m_vert[i].m1.x *= 1.f + (x * m_vert[i].m1.z + zoff); m_vert[i].m1.y *= 1.f + (y * m_vert[i].m1.z + zoff); } } void EasyMesh::Scale(vec3 const &s) { vec3 const invs = vec3(1) / s; for (int i = m_cursors.Last().m1; i < m_vert.Count(); i++) { m_vert[i].m1 *= s; m_vert[i].m2 = normalize(m_vert[i].m2 * invs); } /* Flip winding if the scaling involves mirroring */ if (!m_ignore_winding_on_scale && s.x * s.y * s.z < 0) { for (int i = m_cursors.Last().m2; i < m_indices.Count(); i += 3) { uint16_t tmp = m_indices[i + 0]; m_indices[i + 0] = m_indices[i + 1]; m_indices[i + 1] = tmp; } } } void EasyMesh::MirrorX() { DupAndScale(vec3(-1, 1, 1)); } void EasyMesh::MirrorY() { DupAndScale(vec3(1, -1, 1)); } void EasyMesh::MirrorZ() { DupAndScale(vec3(1, 1, -1)); } void EasyMesh::DupAndScale(vec3 const &s) { int vlen = m_vert.Count() - m_cursors.Last().m1; int tlen = m_indices.Count() - m_cursors.Last().m2; for (int i = 0; i < vlen; i++) m_vert << m_vert[m_cursors.Last().m1++]; for (int i = 0; i < tlen; i++) m_indices << m_indices[m_cursors.Last().m2++] + vlen; Scale(s); m_cursors.Last().m1 -= vlen; m_cursors.Last().m2 -= tlen; } void EasyMesh::AppendCylinder(int nsides, float h, float r1, float r2, int dualside, int smooth) { int vbase = m_vert.Count(); mat3 rotmat = mat3::rotate(360.0f / nsides, 0.f, 1.f, 0.f); vec3 p1(r1, -h * .5f, 0.f), p2(r2, h * .5f, 0.f), n; /* Construct normal */ if (r2 != .0f) n = vec3(r2, h * .5f, 0.f); else n = vec3(r1, h * .5f, 0.f); n.y = r1 * (r1 - r2) / h; if (!smooth) n = mat3::rotate(180.0f / nsides, 0.f, 1.f, 0.f) * n; n = normalize(n); /* FIXME: normals should be flipped in two-sided mode, but that * means duplicating the vertices again... */ for (int i = 0; i < nsides; i++) { AddVertex(p1); SetCurVertNormal(n); AddVertex(p2); SetCurVertNormal(n); SetCurVertColor(m_color2); if (smooth) { int j = (i + 1) % nsides; AppendQuad(j * 2, j * 2 + 1, i * 2 + 1, i * 2, vbase); if (dualside) AppendQuad(i * 2, i * 2 + 1, j * 2 + 1, j * 2, vbase); } p1 = rotmat * p1; p2 = rotmat * p2; if (!smooth) { AddVertex(p1); SetCurVertNormal(n); AddVertex(p2); SetCurVertNormal(n); SetCurVertColor(m_color2); AppendQuad(i * 4 + 2, i * 4 + 3, i * 4 + 1, i * 4, vbase); if (dualside) AppendQuad(i * 4, i * 4 + 1, i * 4 + 3, i * 4 + 2, vbase); } n = rotmat * n; } } void EasyMesh::AppendCapsule(int ndivisions, float h, float r) { int ibase = m_indices.Count(); Array vertices; /* FIXME: we don't know how to handle even-divided capsules, so we * force the count to be odd. */ if (h) ndivisions |= 1; /* Fill in the icosahedron vertices, rotating them so that there * is a vertex at [0 1 0] and [0 -1 0] after normalisation. */ float phi = 0.5f + 0.5f * sqrt(5.f); mat3 mat = mat3::rotate(asin(1.f / sqrt(2.f + phi)) * (180.f / M_PI), vec3(0.f, 0.f, 1.f)); for (int i = 0; i < 4; i++) { float x = (i & 1) ? 0.5f : -0.5f; float y = (i & 2) ? phi * 0.5f : phi * -0.5f; vertices << mat * vec3(x, y, 0.f); vertices << mat * vec3(0.f, x, y); vertices << mat * vec3(y, 0.f, x); } static int const trilist[] = { 0, 1, 2, 2, 4, 6, 3, 8, 1, 9, 4, 8, 7, 0, 5, 7, 11, 3, 10, 5, 6, 10, 9, 11, 0, 3, 1, 7, 3, 0, 1, 4, 2, 8, 4, 1, 2, 5, 0, 6, 5, 2, 6, 9, 10, 4, 9, 6, 7, 10, 11, 5, 10, 7, 8, 11, 9, 3, 11, 8 }; for (unsigned i = 0; i < sizeof(trilist) / sizeof(*trilist); i += 3) { vec3 const &a = vertices[trilist[i]]; vec3 const &b = vertices[trilist[i + 1]]; vec3 const &c = vertices[trilist[i + 2]]; vec3 const vb = 1.f / ndivisions * (b - a); vec3 const vc = 1.f / ndivisions * (c - a); int line = ndivisions + 1; for (int v = 0, x = 0, y = 0; x < ndivisions + 1; v++) { vec3 p[] = { a + x * vb + y * vc, p[0] + vb, p[0] + vc, p[0] + vb + vc }; /* FIXME: when we normalise here, we get a volume that is slightly * smaller than the sphere of radius 1, since we are not using * the midradius. */ for (int k = 0; k < 4; k++) p[k] = normalize(p[k]) * r; /* If this is a capsule, grow in the Z direction */ if (h > 0.f) { for (int k = 0; k < 4; k++) p[k].y += (p[k].y > 0.f) ? 0.5f * h : -0.5f * h; } /* Add zero, one or two triangles */ if (y < line - 1) { AddVertex(p[0]); AddVertex(p[1]); AddVertex(p[2]); AppendTriangle(0, 2, 1, m_vert.Count() - 3); } if (y < line - 2) { AddVertex(p[1]); AddVertex(p[3]); AddVertex(p[2]); AppendTriangle(0, 2, 1, m_vert.Count() - 3); } y++; if (y == line) { x++; y = 0; line--; } } } ComputeNormals(ibase, m_indices.Count() - ibase); } void EasyMesh::AppendSphere(int ndivisions, vec3 const &size) { OpenBrace(); AppendCapsule(ndivisions, 0.f, 1.f); Scale(size); CloseBrace(); } void EasyMesh::AppendTorus(int ndivisions, float r1, float r2) { int ibase = m_indices.Count(); int nidiv = ndivisions; /* Cross-section */ int njdiv = ndivisions; /* Full circumference */ for (int j = 0; j < njdiv; j++) for (int i = 0; i < 2 * nidiv; i++) { for (int di = 0; di < 2; di++) for (int dj = 0; dj < 2; dj++) { int i2 = (i + di) % nidiv; int j2 = (j + dj) % njdiv; float x = 0.5f * (r1 + r2) + 0.5 * (r2 - r1) * lol::cos(2.0 * M_PI * i2 / nidiv); float y = 0.5f * (r2 - r1) * lol::sin(2.0 * M_PI * i2 / nidiv); float z = 0.0f; float ca = lol::cos(2.0 * M_PI * j2 / njdiv); float sa = lol::sin(2.0 * M_PI * j2 / njdiv); float x2 = x * ca - z * sa; float z2 = z * ca + x * sa; AddVertex(vec3(x2, y, z2)); } AppendTriangle(0, 2, 3, m_vert.Count() - 4); AppendTriangle(0, 3, 1, m_vert.Count() - 4); } ComputeNormals(ibase, m_indices.Count() - ibase); } void EasyMesh::AppendBox(vec3 const &size, float chamf) { AppendBox(size, chamf, false); } void EasyMesh::AppendSmoothChamfBox(vec3 const &size, float chamf) { AppendBox(size, chamf, true); } void EasyMesh::AppendFlatChamfBox(vec3 const &size, float chamf) { AppendBox(size, chamf, false); } void EasyMesh::AppendBox(vec3 const &size, float chamf, bool smooth) { if (chamf < 0.0f) { AppendBox(size + vec3(chamf * 2.0f), -chamf, smooth); return; } int vbase = m_vert.Count(); int ibase = m_indices.Count(); vec3 d = size * 0.5f; AddVertex(vec3(-d.x, -d.y, -d.z - chamf)); AddVertex(vec3(-d.x, +d.y, -d.z - chamf)); AddVertex(vec3(+d.x, +d.y, -d.z - chamf)); AddVertex(vec3(+d.x, -d.y, -d.z - chamf)); AddVertex(vec3(-d.x - chamf, -d.y, +d.z)); AddVertex(vec3(-d.x - chamf, +d.y, +d.z)); AddVertex(vec3(-d.x - chamf, +d.y, -d.z)); AddVertex(vec3(-d.x - chamf, -d.y, -d.z)); AddVertex(vec3(+d.x, -d.y, +d.z + chamf)); AddVertex(vec3(+d.x, +d.y, +d.z + chamf)); AddVertex(vec3(-d.x, +d.y, +d.z + chamf)); AddVertex(vec3(-d.x, -d.y, +d.z + chamf)); AddVertex(vec3(+d.x + chamf, -d.y, -d.z)); AddVertex(vec3(+d.x + chamf, +d.y, -d.z)); AddVertex(vec3(+d.x + chamf, +d.y, +d.z)); AddVertex(vec3(+d.x + chamf, -d.y, +d.z)); AddVertex(vec3(-d.x, -d.y - chamf, +d.z)); AddVertex(vec3(-d.x, -d.y - chamf, -d.z)); AddVertex(vec3(+d.x, -d.y - chamf, -d.z)); AddVertex(vec3(+d.x, -d.y - chamf, +d.z)); AddVertex(vec3(-d.x, +d.y + chamf, -d.z)); AddVertex(vec3(-d.x, +d.y + chamf, +d.z)); AddVertex(vec3(+d.x, +d.y + chamf, +d.z)); AddVertex(vec3(+d.x, +d.y + chamf, -d.z)); /* The 6 quads on each side of the box */ for (int i = 0; i < 24; i += 4) AppendQuad(i, i + 1, i + 2, i + 3, vbase); ComputeNormals(ibase, m_indices.Count() - ibase); ibase = m_indices.Count(); /* The 8 quads at each edge of the box */ if (chamf) { static int const quadlist[48] = { 0, 3, 18, 17, 4, 7, 17, 16, 8, 11, 16, 19, 12, 15, 19, 18, 2, 1, 20, 23, 6, 5, 21, 20, 10, 9, 22, 21, 14, 13, 23, 22, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12, 3, 2, }; for (int i = 0; i < 48; i += 4) { if (smooth) AppendQuad(quadlist[i], quadlist[i + 1], quadlist[i + 2], quadlist[i + 3], vbase); else AppendQuadDuplicateVerts(quadlist[i], quadlist[i + 1], quadlist[i + 2], quadlist[i + 3], vbase); } } /* The 8 triangles at each corner of the box */ if (chamf) { static int const trilist[24] = { 3, 12, 18, 15, 8, 19, 11, 4, 16, 7, 0, 17, 2, 23, 13, 14, 22, 9, 10, 21, 5, 6, 20, 1, }; for (int i = 0; i < 24; i += 3) { if (smooth) AppendTriangle(trilist[i], trilist[i + 1], trilist[i + 2], vbase); else AppendTriangleDuplicateVerts(trilist[i], trilist[i + 1], trilist[i + 2], vbase); } } if (!smooth) ComputeNormals(ibase, m_indices.Count() - ibase); } void EasyMesh::AppendStar(int nbranches, float r1, float r2, int fade, int fade2) { int vbase = m_vert.Count(); AddVertex(vec3(0.f, 0.f, 0.f)); mat3 rotmat = mat3::rotate(180.0f / nbranches, 0.f, 1.f, 0.f); vec3 p1(r1, 0.f, 0.f), p2(r2, 0.f, 0.f); p2 = rotmat * p2; rotmat = rotmat * rotmat; for (int i = 0; i < nbranches; i++) { AddVertex(p1); if (fade2) SetCurVertColor(m_color2); AddVertex(p2); if (fade) SetCurVertColor(m_color2); AppendQuad(0, 2 * i + 1, 2 * i + 2, (2 * i + 3) % (2 * nbranches), vbase); p1 = rotmat * p1; p2 = rotmat * p2; } } void EasyMesh::AppendExpandedStar(int nbranches, float r1, float r2, float extrar) { int vbase = m_vert.Count(); AddVertex(vec3(0.f, 0.f, 0.f)); mat3 rotmat = mat3::rotate(180.0f / nbranches, 0.f, 1.f, 0.f); vec3 p1(r1, 0.f, 0.f), p2(r2, 0.f, 0.f), p3(r1 + extrar, 0.f, 0.f), p4(r2 + extrar, 0.f, 0.f);; p2 = rotmat * p2; p4 = rotmat * p4; rotmat = rotmat * rotmat; for (int i = 0; i < nbranches; i++) { AddVertex(p1); AddVertex(p2); AddVertex(p3); SetCurVertColor(m_color2); AddVertex(p4); SetCurVertColor(m_color2); int j = (i + 1) % nbranches; AppendQuad(0, 4 * i + 1, 4 * i + 2, 4 * j + 1, vbase); AppendQuad(4 * i + 1, 4 * i + 3, 4 * i + 4, 4 * i + 2, vbase); AppendQuad(4 * j + 1, 4 * i + 2, 4 * i + 4, 4 * j + 3, vbase); p1 = rotmat * p1; p2 = rotmat * p2; p3 = rotmat * p3; p4 = rotmat * p4; } } void EasyMesh::AppendDisc(int nsides, float r, int fade) { int vbase = m_vert.Count(); AddVertex(vec3(0.f, 0.f, 0.f)); mat3 rotmat = mat3::rotate(360.0f / nsides, 0.f, 1.f, 0.f); vec3 p1(r, 0.f, 0.f); for (int i = 0; i < nsides; i++) { AddVertex(p1); if (fade) SetCurVertColor(m_color2); AppendTriangle(0, i + 1, ((i + 1) % nsides) + 1, vbase); p1 = rotmat * p1; } } void EasyMesh::AppendSimpleTriangle(float size, int fade) { mat3 m = mat3::rotate(120.f, 0.f, 1.f, 0.f); vec3 p(0.f, 0.f, size); AddVertex(p); p = m * p; AddVertex(p); if (fade) SetCurVertColor(m_color2); p = m * p; AddVertex(p); if (fade) SetCurVertColor(m_color2); AppendTriangle(0, 1, 2, m_vert.Count() - 3); } void EasyMesh::AppendSimpleQuad(float size, int fade) { AppendSimpleQuad(vec2(size * .5f), vec2(size * -.5f), 0.f, fade); } void EasyMesh::AppendSimpleQuad(vec2 p1, vec2 p2, float z, int fade) { AddVertex(vec3(p2.x, z, -p1.y)); AddVertex(vec3(p2.x, z, -p2.y)); AddVertex(vec3(p1.x, z, -p2.y)); if (fade) SetCurVertColor(m_color2); AddVertex(vec3(p1.x, z, -p1.y)); if (fade) SetCurVertColor(m_color2); AppendQuad(3, 2, 1, 0, m_vert.Count() - 4); ComputeNormals(m_indices.Count() - 6, 6); } void EasyMesh::AppendCog(int nbsides, float h, float r1, float r2, float r12, float r22, float sidemul, int offset) { int ibase = m_indices.Count(); int vbase = m_vert.Count(); AddVertex(vec3(0.f, h * .5f, 0.f)); AddVertex(vec3(0.f, h * -.5f, 0.f)); SetCurVertColor(m_color2); mat3 rotmat = mat3::rotate(180.0f / nbsides, 0.f, 1.f, 0.f); mat3 smat1 = mat3::rotate(sidemul * 180.0f / nbsides, 0.f, 1.f, 0.f); mat3 smat2 = mat3::rotate(sidemul * -360.0f / nbsides, 0.f, 1.f, 0.f); vec3 p[8]; p[0] = vec3(r1, h * .5f, 0.f); p[1] = rotmat * p[0]; p[2] = smat1 * (rotmat * vec3(r1 + r12, h * .5f, 0.f)); p[3] = smat2 * (rotmat * p[2]); p[4] = vec3(r2, h * -.5f, 0.f); p[5] = rotmat * p[4]; p[6] = smat1 * (rotmat * vec3(r2 + r22, h * -.5f, 0.f)); p[7] = smat2 * (rotmat * p[6]); if (offset & 1) for (int n = 0; n < 8; n++) p[n] = rotmat * p[n]; rotmat = rotmat * rotmat; for (int i = 0; i < nbsides; i++) { /* Each vertex will share three faces, so three different * normals, therefore we add each vertex three times. */ for (int n = 0; n < 24; n++) { AddVertex(p[n / 3]); if (n / 3 >= 4) SetCurVertColor(m_color2); } int j = 24 * i, k = 24 * ((i + 1) % nbsides); /* The top and bottom faces */ AppendQuad(0, j + 2, j + 5, k + 2, vbase); AppendQuad(1, k + 14, j + 17, j + 14, vbase); AppendQuad(j + 5, j + 8, j + 11, k + 2, vbase); AppendQuad(k + 14, j + 23, j + 20, j + 17, vbase); /* The side quads */ AppendQuad(j + 6, j + 3, j + 15, j + 18, vbase); AppendQuad(j + 9, j + 7, j + 19, j + 21, vbase); AppendQuad(j + 12, j + 10, j + 22, j + 24, vbase); AppendQuad(k + 4, j + 13, j + 25, k + 16, vbase); for (int n = 0; n < 8; n++) p[n] = rotmat * p[n]; } ComputeNormals(ibase, m_indices.Count() - ibase); } void EasyMesh::Chamfer(float f) { int vlen = m_vert.Count() - m_cursors.Last().m1; int ilen = m_indices.Count() - m_cursors.Last().m2; /* Step 1: enumerate all faces. This is done by merging triangles * that are coplanar and share an edge. */ int *triangle_classes = new int[ilen / 3]; for (int i = 0; i < ilen / 3; i++) triangle_classes[i] = -1; for (int i = 0; i < ilen / 3; i++) { } /* Fun shit: reduce all triangles */ int *vertices = new int[vlen]; memset(vertices, 0, vlen * sizeof(int)); for (int i = 0; i < ilen; i++) vertices[m_indices[i]]++; for (int i = 0; i < ilen / 3; i++) { #if 0 if (vertices[m_indices[i * 3]] > 1) continue; if (vertices[m_indices[i * 3 + 1]] > 1) continue; if (vertices[m_indices[i * 3 + 2]] > 1) continue; #endif vec3 bary = 1.f / 3.f * (m_vert[m_indices[i * 3]].m1 + m_vert[m_indices[i * 3 + 1]].m1 + m_vert[m_indices[i * 3 + 2]].m1); for (int k = 0; k < 3; k++) { vec3 &p = m_vert[m_indices[i * 3 + k]].m1; p -= normalize(p - bary) * f; } } } } /* namespace lol */