// // BtPhysTest // // Copyright: (c) 2009-2012 Benjamin Huet // (c) 2012 Sam Hocevar // #if defined HAVE_CONFIG_H # include "config.h" #endif #if defined _WIN32 # include #endif #if defined _XBOX # define _USE_MATH_DEFINES /* for M_PI */ # include # undef near /* Fuck Microsoft */ # undef far /* Fuck Microsoft again */ #elif defined _WIN32 # define _USE_MATH_DEFINES /* for M_PI */ # define WIN32_LEAN_AND_MEAN # include # undef near /* Fuck Microsoft */ # undef far /* Fuck Microsoft again */ #else # include #endif #include "core.h" #include "loldebug.h" using namespace lol; #ifndef HAVE_PHYS_USE_BULLET #define HAVE_PHYS_USE_BULLET #endif /* HAVE_PHYS_USE_BULLET */ #include "Physics/LolPhysics.h" #include "Physics/EasyPhysics.h" #include "PhysicObject.h" #include "BtPhysTest.h" using namespace lol::phys; #define CUBE_HALF_EXTENTS .5f #define EXTRA_HEIGHT 1.f int gNumObjects = 64; BtPhysTest::BtPhysTest(bool editor) { /* Create a camera that matches the settings of XNA BtPhysTest */ m_camera = new Camera(vec3(0.f, 600.f, 0.f), vec3(0.f, 0.f, 0.f), vec3(0, 1, 0)); m_camera->SetRotation(quat::fromeuler_xyz(0.f, 0.f, 0.f)); m_camera->SetPerspective(45.f, 1280.f, 960.f, .1f, 1000.f); //m_camera->SetOrtho(1280.f / 6, 960.f / 6, -1000.f, 1000.f); Ticker::Ref(m_camera); m_ready = false; m_simulation = new Simulation(); m_simulation->Init(); vec3 NewGravity = vec3(.0f, -10.0f, .0f); m_simulation->SetGravity(NewGravity); m_simulation->SetContinuousDetection(true); m_simulation->SetTimestep(1.f / 120.f); Ticker::Ref(m_simulation); float offset = 29.5f; vec3 pos_offset = vec3(.0f, 30.f, .0f); for (int i=0; i < 6; i++) { vec3 NewPosition = vec3(.0f); quat NewRotation = quat(1.f); PhysicsObject* NewPhyobj = new PhysicsObject(m_simulation, NewPosition, NewRotation); int idx = i/2; NewPosition = pos_offset; NewPosition[idx] += offset; offset *= -1.f; if (idx != 1) { vec3 axis = vec3(.0f); axis[2 - idx] = 1; NewRotation = quat::rotate(90.f, axis); } NewPhyobj->SetTransform(NewPosition, NewRotation); Ticker::Ref(NewPhyobj); m_ground_list << NewPhyobj; } if (1) { for (int x=0; x < 6; x++) { for (int y=0; y < 6; y++) { for (int z=0; z < 5; z++) { PhysicsObject* new_physobj = new PhysicsObject(m_simulation, 1000.f, vec3(-20.f, 15.f, -20.f) + vec3(8.f * (float)x, 8.f * (float)y, 8.f * (float)z)); m_physobj_list << new_physobj; Ticker::Ref(new_physobj); } } } } if (1) { Array RopeElements; for (int i = 0; i < 14; i++) { PhysicsObject* new_physobj = new PhysicsObject(m_simulation, 1000.f, vec3(0.f, 15.f, -20.f) + vec3(0.f, 0.f, 2.f * (float)i), 1); RopeElements << new_physobj; m_physobj_list << new_physobj; Ticker::Ref(new_physobj); if (RopeElements.Count() > 1) { EasyConstraint* new_constraint = new EasyConstraint(); vec3 A2B = .5f * (RopeElements[i]->GetPhysic()->GetTransform().v3.xyz - RopeElements[i - 1]->GetPhysic()->GetTransform().v3.xyz); new_constraint->SetPhysObjA(RopeElements[i - 1]->GetPhysic(), lol::mat4::translate(A2B)); new_constraint->SetPhysObjB(RopeElements[i]->GetPhysic(), lol::mat4::translate(-A2B)); new_constraint->InitConstraintToPoint2Point(); new_constraint->DisableCollisionBetweenObjs(true); new_constraint->AddToSimulation(m_simulation); m_constraint_list << new_constraint; } } } #if 0 //init Physics { m_bt_ccd_mode = USE_CCD; //collision configuration contains default setup for memory, collision setup m_bt_collision_config = new btDefaultCollisionConfiguration(); //use the default collision dispatcher. For parallel processing you can use a diffent dispatcher (see Extras/BulletMultiThreaded) m_bt_dispatcher = new btCollisionDispatcher(m_bt_collision_config); m_bt_dispatcher->registerCollisionCreateFunc(BOX_SHAPE_PROXYTYPE, BOX_SHAPE_PROXYTYPE, m_bt_collision_config->getCollisionAlgorithmCreateFunc(CONVEX_SHAPE_PROXYTYPE, CONVEX_SHAPE_PROXYTYPE)); m_bt_broadphase = new btDbvtBroadphase(); ///the default constraint solver. For parallel processing you can use a different solver (see Extras/BulletMultiThreaded) m_bt_solver = new btSequentialImpulseConstraintSolver; m_bt_world = new btDiscreteDynamicsWorld(m_bt_dispatcher, m_bt_broadphase, m_bt_solver, m_bt_collision_config); //m_bt_world->setDebugDrawer(&sDebugDrawer); m_bt_world->getSolverInfo().m_splitImpulse = true; m_bt_world->getSolverInfo().m_numIterations = 20; m_bt_world->getDispatchInfo().m_useContinuous = (m_bt_ccd_mode == USE_CCD); m_bt_world->setGravity(btVector3(0,-10,0)); ///create a few basic rigid bodies btBoxShape* box = new btBoxShape(btVector3(btScalar(110.),btScalar(1.),btScalar(110.))); btCollisionShape* groundShape = box; m_bt_collision_shapes << groundShape; m_ground_mesh.Compile("[sc#ddd afcb220 2 220 -1]"); //m_bt_collision_shapes << new btCylinderShape(btVector3(.5f,.5f,.5f)); btTransform groundTransform; groundTransform.setIdentity(); //We can also use DemoApplication::localCreateRigidBody, but for clarity it is provided here: { btScalar mass(0.); //rigidbody is dynamic if and only if mass is non zero, otherwise static bool isDynamic = (mass != 0.f); btVector3 localInertia(0,0,0); if (isDynamic) groundShape->calculateLocalInertia(mass,localInertia); //using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform); btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,groundShape,localInertia); btRigidBody* body = new btRigidBody(rbInfo); //add the body to the dynamics world m_bt_world->addRigidBody(body); } //Adding Shapes { //create a few dynamic rigidbodies // Re-using the same collision is better for memory usage and performance btCollisionShape* colShape = new btBoxShape(btVector3(1,1,1)); m_rigid_mesh[0].Compile("[sc#add afcb2 2 2 -.1]"); m_rigid_mesh[1].Compile("[sc#dad afcb2 2 2 -.1]"); m_rigid_mesh[2].Compile("[sc#dda afcb2 2 2 -.1]"); m_rigid_mesh[3].Compile("[sc#daa afcb2 2 2 -.1]"); m_rigid_mesh[4].Compile("[sc#ada afcb2 2 2 -.1]"); m_rigid_mesh[5].Compile("[sc#aad afcb2 2 2 -.1]"); m_bt_collision_shapes << colShape; m_bt_dynamic_shapes << colShape; /// Create Dynamic Objects btTransform startTransform; startTransform.setIdentity(); btScalar mass(1.f); //rigidbody is dynamic if and only if mass is non zero, otherwise static bool isDynamic = (mass != 0.f); btVector3 localInertia(0,0,0); if (isDynamic) colShape->calculateLocalInertia(mass,localInertia); int i; for (i=0;i3) { col=11; row2 |=1; } btVector3 pos(((row+col+row2) % 4)*CUBE_HALF_EXTENTS, 20.0f + row*8*CUBE_HALF_EXTENTS+CUBE_HALF_EXTENTS+EXTRA_HEIGHT, col*8*CUBE_HALF_EXTENTS + 2 * (row2%2)*CUBE_HALF_EXTENTS); trans.setOrigin(pos); float mass = 1.f; btAssert((!shape || shape->getShapeType() != INVALID_SHAPE_PROXYTYPE)); //rigidbody is dynamic if and only if mass is non zero, otherwise static bool isDynamic = (mass != 0.f); btVector3 localInertia(0,0,0); if (isDynamic) shape->calculateLocalInertia(mass,localInertia); //using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects btDefaultMotionState* myMotionState = new btDefaultMotionState(trans); btRigidBody::btRigidBodyConstructionInfo cInfo(mass,myMotionState,shape,localInertia); btRigidBody* body = new btRigidBody(cInfo); body->setContactProcessingThreshold(BT_LARGE_FLOAT); m_bt_world->addRigidBody(body); ///when using m_ccdMode if (m_bt_ccd_mode == USE_CCD) { body->setCcdMotionThreshold(CUBE_HALF_EXTENTS); body->setCcdSweptSphereRadius(0.9*CUBE_HALF_EXTENTS); } } } } #endif } void BtPhysTest::TickGame(float seconds) { WorldEntity::TickGame(seconds); if (Input::GetButtonState(27 /*SDLK_ESCAPE*/)) Ticker::Shutdown(); vec3 GroundBarycenter = vec3(.0f); vec3 PhysObjBarycenter = vec3(.0f); float factor = .0f; for (int i = 0; i < m_ground_list.Count(); i++) { PhysicsObject* PhysObj = m_ground_list[i]; mat4 GroundMat = PhysObj->GetTransform(); GroundBarycenter += GroundMat.v3.xyz; factor += 1.f; } GroundBarycenter /= factor; for (int i = 0; i < m_ground_list.Count(); i++) { PhysicsObject* PhysObj = m_ground_list[i]; mat4 GroundMat = PhysObj->GetTransform(); vec3 CenterToGround = GroundMat.v3.xyz - GroundBarycenter; vec3 CenterToCam = m_camera->m_position - GroundBarycenter; if (dot(normalize(CenterToCam - CenterToGround), normalize(CenterToGround)) > 0.f) PhysObj->SetRender(false); else PhysObj->SetRender(true); } if (1) { for (int i = 0; i < m_ground_list.Count(); i++) { PhysicsObject* PhysObj = m_ground_list[i]; mat4 GroundMat = PhysObj->GetTransform(); mat4 CenterMx = mat4::translate(GroundBarycenter); GroundMat = inverse(CenterMx) * GroundMat; GroundMat = CenterMx * mat4(quat::fromeuler_xyz(vec3(.0f, 20.f, 20.0f) * seconds)) * GroundMat; PhysObj->SetTransform(GroundMat.v3.xyz, quat(GroundMat)); } } PhysObjBarycenter = vec3(.0f); for (int i = 0; i < m_physobj_list.Count(); i++) { PhysicsObject* PhysObj = m_physobj_list[i]; mat4 GroundMat = PhysObj->GetTransform(); PhysObjBarycenter += GroundMat.v3.xyz; factor += 1.f; } PhysObjBarycenter /= factor; m_camera->SetTarget(PhysObjBarycenter); m_camera->SetPosition(GroundBarycenter + normalize(GroundBarycenter - PhysObjBarycenter) * 60.0f); #if 0 ///step the simulation if (m_bt_world) { //int steps = (int)(seconds / 0.005f); //for (int i = 0; i < steps; i++) m_bt_world->stepSimulation(seconds /*/ steps*/); //optional but useful: debug drawing //m_bt_world->debugDrawWorld(); } #endif } void BtPhysTest::TickDraw(float seconds) { WorldEntity::TickDraw(seconds); if (!m_ready) { #if 0 m_ground_mesh.MeshConvert(); m_rigid_mesh[0].MeshConvert(); m_rigid_mesh[1].MeshConvert(); m_rigid_mesh[2].MeshConvert(); m_rigid_mesh[3].MeshConvert(); m_rigid_mesh[4].MeshConvert(); m_rigid_mesh[5].MeshConvert(); #endif /* FIXME: this object never cleans up */ m_ready = true; } Video::SetClearColor(vec4(0.0f, 0.0f, 0.12f, 1.0f)); #if 0 vec3 BarycenterLocation = vec3(.0f); float BarycenterFactor = 0.0f; for(int i=0;igetCollisionObjectArray()[i]; btRigidBody* body = btRigidBody::upcast(colObj); if(body && body->getMotionState()) { btDefaultMotionState* myMotionState = (btDefaultMotionState*)body->getMotionState(); myMotionState->m_graphicsWorldTrans.getOpenGLMatrix(&m[0][0]); rot = myMotionState->m_graphicsWorldTrans.getBasis(); } else { colObj->getWorldTransform().getOpenGLMatrix(&m[0][0]); rot = colObj->getWorldTransform().getBasis(); } if (i > 0) { BarycenterLocation += m.v3.xyz; BarycenterFactor += 1.0f; } if (i == 0) m_ground_mesh.Render(m); else m_rigid_mesh[i % 6].Render(m); } if (BarycenterFactor > .0f) { BarycenterLocation /= BarycenterFactor; m_camera->SetTarget(BarycenterLocation); m_camera->SetPosition(BarycenterLocation + vec3(-20.0f, 8.0f, .0f)); } #endif } BtPhysTest::~BtPhysTest() { Ticker::Unref(m_camera); while (m_constraint_list.Count()) { EasyConstraint* CurPop = m_constraint_list.Last(); m_constraint_list.Pop(); CurPop->RemoveFromSimulation(m_simulation); delete CurPop; } while (m_ground_list.Count()) { PhysicsObject* CurPop = m_ground_list.Last(); m_ground_list.Pop(); CurPop->GetPhysic()->RemoveFromSimulation(m_simulation); Ticker::Unref(CurPop); } while (m_physobj_list.Count()) { PhysicsObject* CurPop = m_physobj_list.Last(); m_physobj_list.Pop(); CurPop->GetPhysic()->RemoveFromSimulation(m_simulation); Ticker::Unref(CurPop); } Ticker::Unref(m_simulation); #if 0 //Exit Physics { //cleanup in the reverse order of creation/initialization //remove the rigidbodies from the dynamics world and delete them for (int i = m_bt_world->getNumCollisionObjects() - 1; i >= 0 ;i--) { btCollisionObject* obj = m_bt_world->getCollisionObjectArray()[i]; btRigidBody* body = btRigidBody::upcast(obj); if (body && body->getMotionState()) delete body->getMotionState(); m_bt_world->removeCollisionObject(obj); delete obj; } //delete collision shapes for (int j = 0; j < m_bt_collision_shapes.Count(); j++) { btCollisionShape* shape = m_bt_collision_shapes[j]; delete shape; } m_bt_collision_shapes.Empty(); delete m_bt_world; delete m_bt_solver; delete m_bt_broadphase; delete m_bt_dispatcher; delete m_bt_collision_config; } #endif } int main(int argc, char **argv) { Application app("BtPhysTest", ivec2(1280, 720), 60.0f); #if defined _MSC_VER && !defined _XBOX _chdir(".."); #elif defined _WIN32 && !defined _XBOX _chdir("../.."); #endif new BtPhysTest(argc > 1); app.ShowPointer(false); app.Run(); return EXIT_SUCCESS; }