// // Lol Engine // // Copyright © 2010—2019 Sam Hocevar // // Lol Engine is free software. It comes without any warranty, to // the extent permitted by applicable law. You can redistribute it // and/or modify it under the terms of the Do What the Fuck You Want // to Public License, Version 2, as published by the WTFPL Task Force. // See http://www.wtfpl.net/ for more details. // #include #include #include #include #include #include #include namespace lol { /* * First handle explicit specialisation of our templates. */ template<> int real::DEFAULT_BIGIT_COUNT = 16; /* * Initialisation order is not important because everything is * done on demand, but here is the dependency list anyway: * - fast_log() requires R_1 * - log() requires R_LN2 * - inverse() require R_2 * - exp() requires R_0, R_1, R_LN2 * - sqrt() requires R_3 */ static real fast_log(real const &x); static real load_min(); static real load_max(); static real load_pi(); /* These getters do not need caching, their return values are small */ template<> real const real::R_0() { return real(); } template<> real const real::R_INF() { real ret; ret.m_inf = true; return ret; } template<> real const real::R_NAN() { real ret; ret.m_nan = true; return ret; } #define LOL_CONSTANT_GETTER(name, value) \ template<> real const& real::name() \ { \ static real ret; \ static int prev_bigit_count = -1; \ /* If the default bigit count has changed, we must recompute * the value with the desired precision. */ \ if (prev_bigit_count != DEFAULT_BIGIT_COUNT) \ { \ ret = (value); \ prev_bigit_count = DEFAULT_BIGIT_COUNT; \ } \ return ret; \ } LOL_CONSTANT_GETTER(R_1, real(1.0)); LOL_CONSTANT_GETTER(R_2, real(2.0)); LOL_CONSTANT_GETTER(R_3, real(3.0)); LOL_CONSTANT_GETTER(R_10, real(10.0)); LOL_CONSTANT_GETTER(R_MIN, load_min()); LOL_CONSTANT_GETTER(R_MAX, load_max()); LOL_CONSTANT_GETTER(R_LN2, fast_log(R_2())); LOL_CONSTANT_GETTER(R_LN10, log(R_10())); LOL_CONSTANT_GETTER(R_LOG2E, inverse(R_LN2())); LOL_CONSTANT_GETTER(R_LOG10E, inverse(R_LN10())); LOL_CONSTANT_GETTER(R_E, exp(R_1())); LOL_CONSTANT_GETTER(R_PI, load_pi()); LOL_CONSTANT_GETTER(R_PI_2, R_PI() / 2); LOL_CONSTANT_GETTER(R_PI_3, R_PI() / R_3()); LOL_CONSTANT_GETTER(R_PI_4, R_PI() / 4); LOL_CONSTANT_GETTER(R_TAU, R_PI() + R_PI()); LOL_CONSTANT_GETTER(R_1_PI, inverse(R_PI())); LOL_CONSTANT_GETTER(R_2_PI, R_1_PI() * 2); LOL_CONSTANT_GETTER(R_2_SQRTPI, inverse(sqrt(R_PI())) * 2); LOL_CONSTANT_GETTER(R_SQRT2, sqrt(R_2())); LOL_CONSTANT_GETTER(R_SQRT3, sqrt(R_3())); LOL_CONSTANT_GETTER(R_SQRT1_2, R_SQRT2() / 2); #undef LOL_CONSTANT_GETTER /* * Now carry on with the rest of the Real class. */ template<> real::Real(int32_t i) { new(this) real((double)i); } template<> real::Real(uint32_t i) { new(this) real((double)i); } template<> real::Real(float f) { new(this) real((double)f); } template<> real::Real(int64_t i) { new(this) real((uint64_t)lol::abs(i)); m_sign = i < 0; } template<> real::Real(uint64_t i) { new(this) real(); if (i) { /* Only works with 32-bit bigits for now */ static_assert(sizeof(bigit_t) == 4, "bigit_t must be 32-bit"); int delta = 1; while ((i >> 63) == 0) { i <<= 1; ++delta; } i <<= 1; /* Remove implicit one */ m_exponent = 64 - delta; m_mantissa.resize(DEFAULT_BIGIT_COUNT); m_mantissa[0] = (bigit_t)(i >> 32); if (bigit_count() > 1) m_mantissa[1] = (bigit_t)i; } } template<> real::Real(double d) { union { double d; uint64_t x; } u = { d }; m_sign = bool(u.x >> 63); exponent_t exponent = (u.x << 1) >> 53; switch (exponent) { case 0x00: /* +0 / -0 */ break; case 0x7ff: /* Inf/NaN (FIXME: handle NaN!) */ m_inf = true; break; default: /* Only works with 32-bit bigits for now */ static_assert(sizeof(bigit_t) == 4, "bigit_t must be 32-bit"); m_exponent = exponent - ((1 << 10) - 1); m_mantissa.resize(DEFAULT_BIGIT_COUNT); m_mantissa[0] = (bigit_t)(u.x >> 20); if (bigit_count() > 1) m_mantissa[1] = (bigit_t)(u.x << 12); break; } } template<> real::Real(long double f) { /* We don’t know the long double layout, so we get rid of the * exponent, then load it into a real in two steps. */ int exponent; f = frexpl(f, &exponent); new(this) real(double(f)); *this += double(f - (long double)*this); m_exponent += exponent; } template<> real::operator float() const { return (float)(double)*this; } template<> real::operator int32_t() const { return (int32_t)(double)floor(*this); } template<> real::operator uint32_t() const { return (uint32_t)(double)floor(*this); } template<> real::operator uint64_t() const { uint32_t msb = (uint32_t)ldexp(*this, -32); uint64_t ret = ((uint64_t)msb << 32) | (uint32_t)(*this - ldexp((real)msb, 32)); return ret; } template<> real::operator int64_t() const { /* If number is positive, convert it to uint64_t first. If it is * negative, switch its sign first. */ return is_negative() ? -(int64_t)-*this : (int64_t)(uint64_t)*this; } template<> real::operator double() const { union { double d; uint64_t x; } u; /* Get sign */ u.x = (is_negative() ? 1 : 0) << 11; /* Compute new exponent (FIXME: handle Inf/NaN) */ int64_t e = m_exponent + ((1 << 10) - 1); if (is_zero()) u.x <<= 52; else if (e < 0) /* if exponent underflows, set to zero */ u.x <<= 52; else if (e >= 0x7ff) { u.x |= 0x7ff; u.x <<= 52; } else { u.x |= e; /* Store mantissa if necessary */ u.x <<= 32; if (bigit_count() > 0) u.x |= m_mantissa[0]; u.x <<= 20; if (bigit_count() > 1) { u.x |= m_mantissa[1] >> 12; /* Rounding */ u.x += (m_mantissa[1] >> 11) & 1; } } return u.d; } template<> real::operator long double() const { double hi = double(*this); double lo = double(*this - hi); return (long double)(hi) + (long double)(lo); } /* * Create a real number from an ASCII representation */ template<> real::Real(char const *str) { real ret = 0; exponent_t exponent = 0; bool hex = false, comma = false, nonzero = false, negative = false, finished = false; for (char const *p = str; *p && !finished; p++) { switch (*p) { case '-': case '+': if (p != str) break; negative = (*p == '-'); break; case '.': if (comma) finished = true; comma = true; break; case 'x': case 'X': /* This character is only valid for 0x... and 0X... numbers */ if (p != str + 1 || str[0] != '0') finished = true; hex = true; break; case 'p': case 'P': if (hex) exponent += atoi(p + 1); finished = true; break; case 'e': case 'E': if (!hex) { exponent += atoi(p + 1); finished = true; break; } LOL_ATTR_FALLTHROUGH case 'a': case 'b': case 'c': case 'd': case 'f': case 'A': case 'B': case 'C': case 'D': case 'F': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': if (nonzero) { /* Multiply ret by 10 or 16 depending the base. */ if (!hex) { real x = ret + ret; ret = x + x + ret; } ret.m_exponent += hex ? 4 : 1; } if (*p != '0') { ret += (*p >= 'a' && *p <= 'f') ? (int)(*p - 'a' + 10) : (*p >= 'A' && *p <= 'F') ? (int)(*p - 'A' + 10) : (int)(*p - '0'); nonzero = true; } if (comma) exponent -= hex ? 4 : 1; break; default: finished = true; break; } } if (hex) ret.m_exponent += exponent; else if (exponent) ret *= pow(R_10(), (real)exponent); if (negative) ret = -ret; *this = ret; } template<> real real::operator +() const { return *this; } template<> real real::operator -() const { real ret = *this; ret.m_sign ^= true; return ret; } template<> real real::operator +(real const &x) const { if (x.is_zero()) return *this; if (is_zero()) return x; /* Ensure both arguments are positive. Otherwise, switch signs, * or replace + with -. */ if (is_negative()) return -(-*this + -x); if (x.is_negative()) return *this - (-x); /* Ensure *this has the larger exponent (no need for the mantissa to * be larger, as in subtraction). Otherwise, switch. */ if (m_exponent < x.m_exponent) return x + *this; int64_t e1 = m_exponent; int64_t e2 = x.m_exponent; int64_t bigoff = (e1 - e2) / bigit_bits(); int64_t off = e1 - e2 - bigoff * bigit_bits(); /* FIXME: ensure we have the same number of bigits */ if (bigoff > bigit_count()) return *this; real ret; ret.m_mantissa.resize(bigit_count()); ret.m_exponent = m_exponent; uint64_t carry = 0; for (int i = bigit_count(); i--; ) { carry += m_mantissa[i]; if (i - bigoff >= 0) carry += x.m_mantissa[i - bigoff] >> off; if (off && i - bigoff > 0) carry += (x.m_mantissa[i - bigoff - 1] << (bigit_bits() - off)) & 0xffffffffu; else if (i - bigoff == 0) carry += (uint64_t)1 << (bigit_bits() - off); ret.m_mantissa[i] = (uint32_t)carry; carry >>= bigit_bits(); } /* Renormalise in case we overflowed the mantissa */ if (carry) { carry--; for (int i = 0; i < bigit_count(); ++i) { uint32_t tmp = ret.m_mantissa[i]; ret.m_mantissa[i] = ((uint32_t)carry << (bigit_bits() - 1)) | (tmp >> 1); carry = tmp & 1u; } ret.m_exponent++; } return ret; } template<> real real::operator -(real const &x) const { if (x.is_zero()) return *this; if (is_zero()) return -x; /* Ensure both arguments are positive. Otherwise, switch signs, * or replace - with +. */ if (is_negative()) return -(-*this + x); if (x.is_negative()) return (*this) + (-x); /* Ensure *this is larger than x */ if (*this < x) return -(x - *this); exponent_t e1 = m_exponent; exponent_t e2 = x.m_exponent; exponent_t bigoff = (e1 - e2) / bigit_bits(); exponent_t off = e1 - e2 - bigoff * bigit_bits(); /* FIXME: ensure we have the same number of bigits */ if (bigoff > bigit_count()) return *this; real ret; ret.m_mantissa.resize(bigit_count()); ret.m_exponent = m_exponent; /* int64_t instead of uint64_t to preserve sign through shifts */ exponent_t carry = 0; for (int i = 0; i < bigoff; ++i) { carry -= x.m_mantissa[bigit_count() - 1 - i]; /* Emulates a signed shift */ carry >>= bigit_bits(); carry |= carry << bigit_bits(); } if (bigoff < bigit_count()) carry -= x.m_mantissa[bigit_count() - 1 - bigoff] & (((exponent_t)1 << off) - 1); carry /= (exponent_t)1 << off; for (int i = bigit_count(); i--; ) { carry += m_mantissa[i]; if (i - bigoff >= 0) carry -= x.m_mantissa[i - bigoff] >> off; if (off && i - bigoff > 0) carry -= (x.m_mantissa[i - bigoff - 1] << (bigit_bits() - off)) & 0xffffffffu; else if (i - bigoff == 0) carry -= (uint64_t)1 << (bigit_bits() - off); ret.m_mantissa[i] = (bigit_t)carry; carry >>= bigit_bits(); carry |= carry << bigit_bits(); } carry += 1; /* Renormalise if we underflowed the mantissa */ if (carry == 0) { /* How much do we need to shift the mantissa? FIXME: this could * be computed above */ off = 0; for (int i = 0; i < bigit_count(); ++i) { if (!ret.m_mantissa[i]) { off += bigit_bits(); continue; } /* “~tmp > tmp” checks that the MSB is not set */ for (bigit_t tmp = ret.m_mantissa[i]; ~tmp > tmp; tmp <<= 1) off++; break; } if (off == total_bits()) ret.m_mantissa.resize(0); else { off++; /* Shift once more to get rid of the leading 1 */ ret.m_exponent -= off; bigoff = off / bigit_bits(); off -= bigoff * bigit_bits(); for (int i = 0; i < bigit_count(); ++i) { bigit_t tmp = 0; if (i + bigoff < bigit_count()) tmp |= ret.m_mantissa[i + bigoff] << off; if (off && i + bigoff + 1 < bigit_count()) tmp |= ret.m_mantissa[i + bigoff + 1] >> (bigit_bits() - off); ret.m_mantissa[i] = tmp; } } } return ret; } template<> real real::operator *(real const &x) const { real ret; /* The sign is easy to compute */ ret.m_sign = is_negative() ^ x.is_negative(); /* If any operand is zero, return zero. FIXME: 0 * Inf? */ if (is_zero() || x.is_zero()) return ret; ret.m_mantissa.resize(bigit_count()); ret.m_exponent = m_exponent + x.m_exponent; /* Accumulate low order product; no need to store it, we just * want the carry value */ uint64_t carry = 0, hicarry = 0, prev; for (int i = 0; i < bigit_count(); ++i) { for (int j = 0; j < i + 1; j++) { prev = carry; carry += (uint64_t)m_mantissa[bigit_count() - 1 - j] * (uint64_t)x.m_mantissa[bigit_count() - 1 + j - i]; if (carry < prev) hicarry++; } carry >>= bigit_bits(); carry |= hicarry << bigit_bits(); hicarry >>= bigit_bits(); } /* Multiply the other components */ for (int i = 0; i < bigit_count(); ++i) { for (int j = i + 1; j < bigit_count(); j++) { prev = carry; carry += (uint64_t)m_mantissa[bigit_count() - 1 - j] * (uint64_t)x.m_mantissa[j - 1 - i]; if (carry < prev) hicarry++; } prev = carry; carry += m_mantissa[bigit_count() - 1 - i]; carry += x.m_mantissa[bigit_count() - 1 - i]; if (carry < prev) hicarry++; ret.m_mantissa[bigit_count() - 1 - i] = carry & ~(bigit_t)0; carry >>= bigit_bits(); carry |= hicarry << bigit_bits(); hicarry >>= bigit_bits(); } /* Renormalise in case we overflowed the mantissa */ if (carry) { carry--; for (int i = 0; i < bigit_count(); ++i) { bigit_t tmp = ret.m_mantissa[i]; ret.m_mantissa[i] = ((bigit_t)carry << (bigit_bits() - 1)) | (tmp >> 1); carry = tmp & 1u; } ++ret.m_exponent; } return ret; } template<> real real::operator /(real const &x) const { return *this * inverse(x); } template<> real const &real::operator +=(real const &x) { real tmp = *this; return *this = tmp + x; } template<> real const &real::operator -=(real const &x) { real tmp = *this; return *this = tmp - x; } template<> real const &real::operator *=(real const &x) { real tmp = *this; return *this = tmp * x; } template<> real const &real::operator /=(real const &x) { real tmp = *this; return *this = tmp / x; } template<> bool real::operator ==(real const &x) const { /* If NaN is involved, return false */ if (is_nan() || x.is_nan()) return false; /* If both zero, they are equal; if either is zero, they are different */ if (is_zero() || x.is_zero()) return is_zero() && x.is_zero(); /* FIXME: handle NaN/Inf */ return m_exponent == x.m_exponent && m_mantissa == x.m_mantissa; } template<> bool real::operator !=(real const &x) const { return !(is_nan() || x.is_nan() || *this == x); } template<> bool real::operator <(real const &x) const { /* If NaN is involved, return false */ if (is_nan() || x.is_nan()) return false; /* Ensure we are positive */ if (is_negative()) return -*this > -x; /* If x is zero or negative, we can’t be < x */ if (x.is_negative() || x.is_zero()) return false; /* If we are zero, we must be < x */ if (is_zero()) return true; /* Compare exponents */ if (m_exponent != x.m_exponent) return m_exponent < x.m_exponent; /* Compare all relevant bits */ for (int i = 0; i < bigit_count(); ++i) if (m_mantissa[i] != x.m_mantissa[i]) return m_mantissa[i] < x.m_mantissa[i]; return false; } template<> bool real::operator <=(real const &x) const { return !(is_nan() || x.is_nan() || *this > x); } template<> bool real::operator >(real const &x) const { /* If NaN is involved, return false */ if (is_nan() || x.is_nan()) return false; /* Ensure we are positive */ if (is_negative()) return -*this < -x; /* If x is zero, we’re > x iff we’re non-zero since we’re positive */ if (x.is_zero()) return !is_zero(); /* If x is strictly negative, we’re > x */ if (x.is_negative()) return true; /* If we are zero, we can’t be > x */ if (is_zero()) return false; /* Compare exponents */ if (m_exponent != x.m_exponent) return m_exponent > x.m_exponent; /* Compare all relevant bits */ for (int i = 0; i < bigit_count(); ++i) if (m_mantissa[i] != x.m_mantissa[i]) return m_mantissa[i] > x.m_mantissa[i]; return false; } template<> bool real::operator >=(real const &x) const { return !(is_nan() || x.is_nan() || *this < x); } template<> bool real::operator !() const { return !(bool)*this; } template<> real::operator bool() const { /* A real is "true" if it is non-zero AND not NaN */ return !is_zero() && !is_nan(); } template<> real min(real const &a, real const &b) { return (a < b) ? a : b; } template<> real max(real const &a, real const &b) { return (a > b) ? a : b; } template<> real clamp(real const &x, real const &a, real const &b) { return (x < a) ? a : (x > b) ? b : x; } template<> real inverse(real const &x) { real ret; /* If zero, return infinite */ if (x.is_zero()) return copysign(real::R_INF(), x); /* Use the system’s float inversion to approximate 1/x */ union { float f; uint32_t x; } u = { 1.0f }; u.x |= x.m_mantissa[0] >> 9; u.f = 1.0f / u.f; ret.m_mantissa.resize(x.bigit_count()); ret.m_mantissa[0] = u.x << 9; ret.m_sign = x.m_sign; ret.m_exponent = -x.m_exponent + (u.x >> 23) - 0x7f; /* FIXME: 1+log2(bigit_count) steps of Newton-Raphson seems to be enough for * convergence, but this hasn’t been checked seriously. */ for (int i = 1; i <= x.bigit_count(); i *= 2) ret = ret * (real::R_2() - ret * x); return ret; } template<> real sqrt(real const &x) { /* if zero, return x (FIXME: negative zero?) */ if (x.is_zero()) return x; /* if negative, return NaN */ if (x.is_negative()) return real::R_NAN(); int tweak = x.m_exponent & 1; /* Use the system’s float inversion to approximate 1/sqrt(x). First * we construct a float in the [1..4[ range that has roughly the same * mantissa as our real. Its exponent is 0 or 1, depending on the * parity of x’s exponent. The final exponent is 0, -1 or -2. We use * the final exponent and final mantissa to pre-fill the result. */ union { float f; uint32_t x; } u = { 1.0f }; u.x += tweak << 23; u.x |= x.m_mantissa[0] >> 9; u.f = 1.0f / sqrtf(u.f); real ret; ret.m_mantissa.resize(x.bigit_count()); ret.m_mantissa[0] = u.x << 9; ret.m_exponent = -(x.m_exponent - tweak) / 2 + (u.x >> 23) - 0x7f; /* FIXME: 1+log2(bigit_count()) steps of Newton-Raphson seems to be enough for * convergence, but this hasn’t been checked seriously. */ for (int i = 1; i <= x.bigit_count(); i *= 2) { ret = ret * (real::R_3() - ret * ret * x); --ret.m_exponent; } return ret * x; } template<> real cbrt(real const &x) { /* if zero, return x */ if (x.is_zero()) return x; int tweak = x.m_exponent % 3; if (tweak < 0) tweak += 3; /* Use the system’s float inversion to approximate cbrt(x). First * we construct a float in the [1..8[ range that has roughly the same * mantissa as our real. Its exponent is 0, 1 or 2, depending on the * value of x. The final exponent is 0 or 1 (special case). We use * the final exponent and final mantissa to pre-fill the result. */ union { float f; uint32_t x; } u = { 1.0f }; u.x += tweak << 23; u.x |= x.m_mantissa[0] >> 9; u.f = powf(u.f, 1.f / 3); real ret; ret.m_mantissa.resize(x.bigit_count()); ret.m_mantissa[0] = u.x << 9; ret.m_exponent = (x.m_exponent - tweak) / 3 + (u.x >> 23) - 0x7f; ret.m_sign = x.m_sign; /* FIXME: 1+log2(bigit_count()) steps of Newton-Raphson seems to be enough * for convergence, but this hasn’t been checked seriously. */ real third = inverse(real::R_3()); for (int i = 1; i <= x.bigit_count(); i *= 2) { ret = third * (x / (ret * ret) + (ret * 2)); } return ret; } template<> real pow(real const &x, real const &y) { /* Shortcuts for degenerate cases */ if (!y) return real::R_1(); if (!x) return real::R_0(); /* Small integer exponent: use exponentiation by squaring */ int64_t int_y = (int64_t)y; if (y == (real)int_y) { real ret = real::R_1(); real x_n = int_y > 0 ? x : inverse(x); while (int_y) /* Can be > 0 or < 0 */ { if (int_y & 1) ret *= x_n; x_n *= x_n; int_y /= 2; } return ret; } /* If x is positive, nothing special to do. */ if (x > real::R_0()) return exp(y * log(x)); /* XXX: manpage for pow() says “If x is a finite value less than 0, * and y is a finite noninteger, a domain error occurs, and a NaN is * returned”. We check whether y is closer to an even number or to * an odd number and return something reasonable. */ real round_y = round(y); bool is_odd = round_y / 2 == round(round_y / 2); return is_odd ? exp(y * log(-x)) : -exp(y * log(-x)); } /* A fast factorial implementation for small numbers. An optional * step argument allows to compute double factorials (i.e. with * only the odd or the even terms. */ static real fast_fact(int x, int step = 1) { if (x < step) return 1; if (x == step) return x; unsigned int start = (x + step - 1) % step + 1; real ret(start); uint64_t multiplier = 1; for (int i = start, exponent = 0;;) { if (i >= x) return ldexp(ret * multiplier, exponent); i += step; /* Accumulate the power of two part in the exponent */ unsigned int tmp = i; while ((tmp & 1) == 0) { tmp >>= 1; exponent++; } /* Accumulate the other factors in the multiplier */ if (multiplier * tmp / tmp != multiplier) { ret *= multiplier; multiplier = 1; } multiplier *= tmp; } } template<> real gamma(real const &x) { /* We use Spouge’s formula. FIXME: precision is far from acceptable, * especially with large values. We need to compute this with higher * precision values in order to attain the desired accuracy. It might * also be useful to sort the ck values by decreasing absolute value * and do the addition in this order. */ int a = (int)ceilf(logf(2) / logf(2 * F_PI) * x.total_bits()); real ret = sqrt(real::R_PI() * 2); real fact_k_1 = real::R_1(); for (int k = 1; k < a; k++) { real a_k = (real)(a - k); real ck = pow(a_k, (real)((float)k - 0.5)) * exp(a_k) / (fact_k_1 * (x + (real)(k - 1))); ret += ck; fact_k_1 *= (real)-k; } ret *= pow(x + (real)(a - 1), x - (real::R_1() / 2)); ret *= exp(-x - (real)(a - 1)); return ret; } template<> real fabs(real const &x) { real ret = x; ret.m_sign = false; return ret; } template<> real abs(real const &x) { return fabs(x); } template<> real fract(real const &x) { return x - floor(x); } template<> real degrees(real const &x) { /* FIXME: need to recompute this for different mantissa sizes */ static real mul = real(180) * real::R_1_PI(); return x * mul; } template<> real radians(real const &x) { /* FIXME: need to recompute this for different mantissa sizes */ static real mul = real::R_PI() / real(180); return x * mul; } static real fast_log(real const &x) { /* This fast log method is tuned to work on the [1..2] range and * no effort whatsoever was made to improve convergence outside this * domain of validity. It can converge pretty fast, provided we use * the following variable substitutions: * y = sqrt(x) * z = (y - 1) / (y + 1) * * And the following identities: * ln(x) = 2 ln(y) * = 2 ln((1 + z) / (1 - z)) * = 4 z (1 + z^2 / 3 + z^4 / 5 + z^6 / 7...) * * Any additional sqrt() call would halve the convergence time, but * would also impact the final precision. For now we stick with one * sqrt() call. */ real y = sqrt(x); real z = (y - real::R_1()) / (y + real::R_1()), z2 = z * z, zn = z2; real sum = real::R_1(); for (int i = 3; ; i += 2) { real newsum = sum + zn / (real)i; if (newsum == sum) break; sum = newsum; zn *= z2; } return z * sum * 4; } template<> real log(real const &x) { /* Strategy for log(x): if x = 2^E*M then log(x) = E log(2) + log(M), * with the property that M is in [1..2[, so fast_log() applies here. */ if (x.is_negative() || x.is_zero()) return real::R_NAN(); real tmp(x); tmp.m_exponent = 0; return real(x.m_exponent) * real::R_LN2() + fast_log(tmp); } template<> real log2(real const &x) { /* Strategy for log2(x): see log(x). */ if (x.is_negative() || x.is_zero()) return real::R_NAN(); real tmp(x); tmp.m_exponent = 0; return real(x.m_exponent) + fast_log(tmp) * real::R_LOG2E(); } template<> real log10(real const &x) { return log(x) * real::R_LOG10E(); } static real fast_exp_sub(real const &x, real const &y) { /* This fast exp method is tuned to work on the [-1..1] range and * no effort whatsoever was made to improve convergence outside this * domain of validity. The argument y is used for cases where we * don’t want the leading 1 in the Taylor series. */ real ret = real::R_1() - y, xn = x; int i = 1; for (;;) { real newret = ret + xn; if (newret == ret) break; ret = newret * ++i; xn *= x; } return ret / fast_fact(i); } template<> real exp(real const &x) { /* Strategy for exp(x): the Taylor series does not converge very fast * with large positive or negative values. * * However, since the result is going to be in the form M*2^E, we first * try to predict a value for E, which is approximately: * E ≈ log2(exp(x)) = x / log(2) * * Let E0 be an integer close to x / log(2). We need to find a value x0 * such that exp(x) = 2^E0 * exp(x0). We get x0 = x - E0 log(2). * * Thus the final algorithm: * int E0 = x / log(2) * real x0 = x - E0 log(2) * real x1 = exp(x0) * return x1 * 2^E0 */ real::exponent_t e0 = x / real::R_LN2(); real x0 = x - (real)e0 * real::R_LN2(); real x1 = fast_exp_sub(x0, real::R_0()); x1.m_exponent += e0; return x1; } template<> real exp2(real const &x) { /* Strategy for exp2(x): see strategy in exp(). */ real::exponent_t e0 = x; real x0 = x - (real)e0; real x1 = fast_exp_sub(x0 * real::R_LN2(), real::R_0()); x1.m_exponent += e0; return x1; } template<> real erf(real const &x) { /* Strategy for erf(x): * - if x<0, erf(x) = -erf(-x) * - if x<7, erf(x) = sum((-1)^n·x^(2n+1)/((2n+1)·n!))/sqrt(π/4) * - if x≥7, erf(x) = 1+exp(-x²)/(x·sqrt(π))·sum((-1)^n·(2n-1)!!/(2x²)^n * * FIXME: do not compute factorials at each iteration, accumulate * them instead (see fast_exp_sub). * FIXME: For a potentially faster implementation, see “Expanding the * Error Function erf(z)” at: * http://www.mathematica-journal.com/2014/11/on-burmanns-theorem-and-its-application-to-problems-of-linear-and-nonlinear-heat-transfer-and-diffusion/#more-39602/ */ if (x.is_negative()) return -erf(-x); real sum = real::R_0(); real x2 = x * x; /* FIXME: this test is inefficient; the series converges slowly for x≥1 */ if (x < real(7)) { real xn = x, xmul = x2; for (int n = 0;; ++n, xn *= xmul) { real tmp = xn / (fast_fact(n) * (2 * n + 1)); real newsum = (n & 1) ? sum - tmp : sum + tmp; if (newsum == sum) break; sum = newsum; } return sum * real::R_2_SQRTPI(); } else { real xn = real::R_1(), xmul = inverse(x2 + x2); /* FIXME: this does not converge well! We need to stop at 30 * iterations and sacrifice some accuracy. */ for (int n = 0; n < 30; ++n, xn *= xmul) { real tmp = xn * fast_fact(n * 2 - 1, 2); real newsum = (n & 1) ? sum - tmp : sum + tmp; if (newsum == sum) break; sum = newsum; } return real::R_1() - exp(-x2) / (x * sqrt(real::R_PI())) * sum; } } template<> real sinh(real const &x) { /* We cannot always use (exp(x)-exp(-x))/2 because we'll lose * accuracy near zero. We only use this identity for |x|>0.5. If * |x|<=0.5, we compute exp(x)-1 and exp(-x)-1 instead. */ bool near_zero = (fabs(x) < real::R_1() / 2); real x1 = near_zero ? fast_exp_sub(x, real::R_1()) : exp(x); real x2 = near_zero ? fast_exp_sub(-x, real::R_1()) : exp(-x); return (x1 - x2) / 2; } template<> real tanh(real const &x) { /* See sinh() for the strategy here */ bool near_zero = (fabs(x) < real::R_1() / 2); real x1 = near_zero ? fast_exp_sub(x, real::R_1()) : exp(x); real x2 = near_zero ? fast_exp_sub(-x, real::R_1()) : exp(-x); real x3 = near_zero ? x1 + x2 + real::R_2() : x1 + x2; return (x1 - x2) / x3; } template<> real cosh(real const &x) { /* No need to worry about accuracy here; maybe the last bit is slightly * off, but that's about it. */ return (exp(x) + exp(-x)) / 2; } template<> real frexp(real const &x, real::exponent_t *exp) { if (!x) { *exp = 0; return x; } /* FIXME: check that this works */ *exp = x.m_exponent; real ret = x; ret.m_exponent = 0; return ret; } template<> real ldexp(real const &x, real::exponent_t exp) { real ret = x; if (ret) /* Only do something if non-zero */ ret.m_exponent += exp; return ret; } template<> real modf(real const &x, real *iptr) { real absx = fabs(x); real tmp = floor(absx); *iptr = copysign(tmp, x); return copysign(absx - tmp, x); } template<> real nextafter(real const &x, real const &y) { /* Linux manpage: “If x equals y, the functions return y.” */ if (x == y) return y; /* Ensure x is positive. */ if (x.is_negative()) return -nextafter(-x, -y); /* FIXME: broken for now */ real ulp = ldexp(x, -x.total_bits()); return x < y ? x + ulp : x - ulp; } template<> real copysign(real const &x, real const &y) { real ret = x; ret.m_sign = y.m_sign; return ret; } template<> real floor(real const &x) { /* Strategy for floor(x): * - if negative, return -ceil(-x) * - if zero or negative zero, return x * - if less than one, return zero * - otherwise, if e is the exponent, clear all bits except the * first e. */ if (x < -real::R_0()) return -ceil(-x); if (!x) return x; if (x < real::R_1()) return real::R_0(); real ret = x; real::exponent_t exponent = x.m_exponent; for (int i = 0; i < x.bigit_count(); ++i) { if (exponent <= 0) ret.m_mantissa[i] = 0; else if (exponent < real::bigit_bits()) ret.m_mantissa[i] &= ~((1 << (real::bigit_bits() - exponent)) - 1); exponent -= real::bigit_bits(); } return ret; } template<> real ceil(real const &x) { /* Strategy for ceil(x): * - if negative, return -floor(-x) * - if x == floor(x), return x * - otherwise, return floor(x) + 1 */ if (x < -real::R_0()) return -floor(-x); real ret = floor(x); if (ret < x) ret += real::R_1(); return ret; } template<> real round(real const &x) { if (x < real::R_0()) return -round(-x); return floor(x + (real::R_1() / 2)); } template<> real fmod(real const &x, real const &y) { if (!y) return real::R_0(); /* FIXME: return NaN */ if (!x) return x; real tmp = round(x / y); return x - tmp * y; } template<> real sin(real const &x) { bool switch_sign = x.is_negative(); real absx = fmod(fabs(x), real::R_PI() * 2); if (absx > real::R_PI()) { absx -= real::R_PI(); switch_sign = !switch_sign; } if (absx > real::R_PI_2()) absx = real::R_PI() - absx; real ret = real::R_0(), fact = real::R_1(), xn = absx, mx2 = -absx * absx; int i = 1; for (;;) { real newret = ret + xn; if (newret == ret) break; ret = newret * ((i + 1) * (i + 2)); xn *= mx2; i += 2; } ret /= fast_fact(i); /* Propagate sign */ ret.m_sign ^= switch_sign; return ret; } template<> real cos(real const &x) { return sin(real::R_PI_2() - x); } template<> real tan(real const &x) { /* Constrain input to [-π,π] */ real y = fmod(x, real::R_PI()); /* Constrain input to [-π/2,π/2] */ if (y < -real::R_PI_2()) y += real::R_PI(); else if (y > real::R_PI_2()) y -= real::R_PI(); /* In [-π/4,π/4] return sin/cos */ if (fabs(y) <= real::R_PI_4()) return sin(y) / cos(y); /* Otherwise, return cos/sin */ if (y > real::R_0()) y = real::R_PI_2() - y; else y = -real::R_PI_2() - y; return cos(y) / sin(y); } static inline real asinacos(real const &x, int is_asin) { /* Strategy for asin(): in [-0.5..0.5], use a Taylor series around * zero. In [0.5..1], use asin(x) = π/2 - 2*asin(sqrt((1-x)/2)), and * in [-1..-0.5] just revert the sign. * Strategy for acos(): use acos(x) = π/2 - asin(x) and try not to * lose the precision around x=1. */ real absx = fabs(x); int around_zero = (absx < (real::R_1() / 2)); if (!around_zero) absx = sqrt((real::R_1() - absx) / 2); real ret = absx, xn = absx, x2 = absx * absx, fact1 = 2, fact2 = 1; for (int i = 1; ; ++i) { xn *= x2; real mul = (real)(2 * i + 1); real newret = ret + ldexp(fact1 * xn / (mul * fact2), -2 * i); if (newret == ret) break; ret = newret; fact1 *= (real)((2 * i + 1) * (2 * i + 2)); fact2 *= (real)((i + 1) * (i + 1)); } if (x.is_negative()) ret = -ret; if (around_zero) ret = is_asin ? ret : real::R_PI_2() - ret; else { real adjust = x.is_negative() ? real::R_PI() : real::R_0(); if (is_asin) ret = real::R_PI_2() - adjust - ret * 2; else ret = adjust + ret * 2; } return ret; } template<> real asin(real const &x) { return asinacos(x, 1); } template<> real acos(real const &x) { return asinacos(x, 0); } template<> real atan(real const &x) { /* Computing atan(x): we choose a different Taylor series depending on * the value of x to help with convergence. * * If |x| < 0.5 we evaluate atan(y) near 0: * atan(y) = y - y^3/3 + y^5/5 - y^7/7 + y^9/9 ... * * If 0.5 <= |x| < 1.5 we evaluate atan(1+y) near 0: * atan(1+y) = π/4 + y/(1*2^1) - y^2/(2*2^1) + y^3/(3*2^2) * - y^5/(5*2^3) + y^6/(6*2^3) - y^7/(7*2^4) * + y^9/(9*2^5) - y^10/(10*2^5) + y^11/(11*2^6) ... * * If 1.5 <= |x| < 2 we evaluate atan(sqrt(3)+2y) near 0: * atan(sqrt(3)+2y) = π/3 + 1/2 y - sqrt(3)/2 y^2/2 * + y^3/3 - sqrt(3)/2 y^4/4 + 1/2 y^5/5 * - 1/2 y^7/7 + sqrt(3)/2 y^8/8 * - y^9/9 + sqrt(3)/2 y^10/10 - 1/2 y^11/11 * + 1/2 y^13/13 - sqrt(3)/2 y^14/14 * + y^15/15 - sqrt(3)/2 y^16/16 + 1/2 y^17/17 ... * * If |x| >= 2 we evaluate atan(y) near +∞: * atan(y) = π/2 - y^-1 + y^-3/3 - y^-5/5 + y^-7/7 - y^-9/9 ... */ real absx = fabs(x); if (absx < (real::R_1() / 2)) { real ret = x, xn = x, mx2 = -x * x; for (int i = 3; ; i += 2) { xn *= mx2; real newret = ret + xn / (real)i; if (newret == ret) break; ret = newret; } return ret; } real ret = 0; if (absx < (real::R_3() / 2)) { real y = real::R_1() - absx; real yn = y, my2 = -y * y; for (int i = 0; ; i += 2) { real newret = ret + ldexp(yn / (real)(2 * i + 1), -i - 1); yn *= y; newret += ldexp(yn / (real)(2 * i + 2), -i - 1); yn *= y; newret += ldexp(yn / (real)(2 * i + 3), -i - 2); if (newret == ret) break; ret = newret; yn *= my2; } ret = real::R_PI_4() - ret; } else if (absx < real::R_2()) { real y = (absx - real::R_SQRT3()) / 2; real yn = y, my2 = -y * y; for (int i = 1; ; i += 6) { real newret = ret + ((yn / (real)i) / 2); yn *= y; newret -= (real::R_SQRT3() / 2) * yn / (real)(i + 1); yn *= y; newret += yn / (real)(i + 2); yn *= y; newret -= (real::R_SQRT3() / 2) * yn / (real)(i + 3); yn *= y; newret += (yn / (real)(i + 4)) / 2; if (newret == ret) break; ret = newret; yn *= my2; } ret = real::R_PI_3() + ret; } else { real y = inverse(absx); real yn = y, my2 = -y * y; ret = y; for (int i = 3; ; i += 2) { yn *= my2; real newret = ret + yn / (real)i; if (newret == ret) break; ret = newret; } ret = real::R_PI_2() - ret; } /* Propagate sign */ ret.m_sign = x.m_sign; return ret; } template<> real atan2(real const &y, real const &x) { if (!y) { if (!x.is_negative()) return y; return y.is_negative() ? -real::R_PI() : real::R_PI(); } if (!x) { return y.is_negative() ? -real::R_PI() : real::R_PI(); } /* FIXME: handle the Inf and NaN cases */ real z = y / x; real ret = atan(z); if (x < real::R_0()) ret += (y > real::R_0()) ? real::R_PI() : -real::R_PI(); return ret; } /* Franke’s function, used as a test for interpolation methods */ template<> real franke(real const &x, real const &y) { /* Compute 9x and 9y */ real nx = x + x; nx += nx; nx += nx + x; real ny = y + y; ny += ny; ny += ny + y; /* Temporary variables for the formula */ real a = nx - real::R_2(); real b = ny - real::R_2(); real c = nx + real::R_1(); real d = ny + real::R_1(); real e = nx - real(7); real f = ny - real::R_3(); real g = nx - real(4); real h = ny - real(7); return exp(-(a * a + b * b) * real(0.25)) * real(0.75) + exp(-(c * c / real(49) + d * d / real::R_10())) * real(0.75) + exp(-(e * e + f * f) * real(0.25)) * real(0.5) - exp(-(g * g + h * h)) / real(5); } /* The Peaks example function from Matlab */ template<> real peaks(real const &x, real const &y) { real x2 = x * x; real y2 = y * y; /* 3 * (1-x)^2 * exp(-x^2 - (y+1)^2) */ real ret = real::R_3() * (x2 - x - x + real::R_1()) * exp(- x2 - y2 - y - y - real::R_1()); /* -10 * (x/5 - x^3 - y^5) * exp(-x^2 - y^2) */ ret -= (x + x - real::R_10() * (x2 * x + y2 * y2 * y)) * exp(-x2 - y2); /* -1/3 * exp(-(x+1)^2 - y^2) */ ret -= exp(-x2 - x - x - real::R_1() - y2) / real::R_3(); return ret; } template<> std::ostream& operator <<(std::ostream &s, real const &x) { bool hex = (s.flags() & std::ios_base::basefield) == std::ios_base::hex; s << (hex ? x.xstr() : x.str((int)s.precision())); return s; } template<> std::string real::str(int ndigits) const { std::stringstream ss; real x = *this; if (x.is_negative()) { ss << '-'; x = -x; } if (!x) { ss << '0'; return ss.str(); } // Normalise x so that mantissa is in [1..9.999] // FIXME: better use int64_t when the cast is implemented // FIXME: does not work with R_MAX and probably R_MIN int exponent = ceil(log10(x)); x *= pow(R_10(), -(real)exponent); if (ndigits < 1) ndigits = 1; // Add a bias to simulate some naive rounding x += real(4.99f) * pow(R_10(), -(real)(ndigits + 1)); if (x < R_1()) { x *= R_10(); exponent--; } // Print digits for (int i = 0; i < ndigits; ++i) { int digit = (int)floor(x); ss << (char)('0' + digit); if (i == 0) ss << '.'; x -= real(digit); x *= R_10(); } // Remove trailing zeroes std::string ret = ss.str(); ss.str(""); size_t end = ret.find_last_not_of('0'); if (end != std::string::npos) ss << ret.substr(0, end + 1); // Print exponent information if (exponent) ss << 'e' << (exponent >= 0 ? '+' : '-') << lol::abs(exponent); return ss.str(); } template<> std::string real::xstr() const { std::stringstream ss; if (is_negative()) ss << '-'; ss << "0x1." << std::hex << std::setfill('0'); for (int i = 0; i < bigit_count(); ++i) ss << std::setw(8) << m_mantissa[i]; ss << std::dec; // Remove trailing zeroes std::string ret = ss.str(); ss.str(""); size_t end = ret.find_last_not_of('0'); if (end != std::string::npos) ss << ret.substr(0, end + 1); ss << 'p' << m_exponent; return ss.str(); } static real load_min() { real ret = 1; return ldexp(ret, std::numeric_limits::min()); } static real load_max() { /* FIXME: the last bits of the mantissa are not properly handled in this * code! So we fallback to a slow but exact method. */ #if 0 real ret = 1; ret = ldexp(ret, real::TOTAL_BITS - 1) - ret; return ldexp(ret, real::EXPONENT_BIAS + 2 - real::TOTAL_BITS); #endif /* Generates 0x1.ffff..ffffp18446744073709551615 */ char str[160]; std::sprintf(str, "0x1.%llx%llx%llx%llx%llx%llx%llx%llxp%lld", -1ll, -1ll, -1ll, -1ll, -1ll, -1ll, -1ll, -1ll, (long long int)std::numeric_limits::max()); return real(str); } static real load_pi() { /* Approximate π using Machin’s formula: 16*atan(1/5)-4*atan(1/239) */ real ret = 0, x0 = 5, x1 = 239; real const m0 = -x0 * x0, m1 = -x1 * x1, r16 = 16, r4 = 4; for (int i = 1; ; i += 2) { real newret = ret + r16 / (x0 * (real)i) - r4 / (x1 * (real)i); if (newret == ret) break; ret = newret; x0 *= m0; x1 *= m1; } return ret; } } /* namespace lol */