// // Lol Engine // // Copyright: (c) 2010-2011 Sam Hocevar // This program is free software; you can redistribute it and/or // modify it under the terms of the Do What The Fuck You Want To // Public License, Version 2, as published by Sam Hocevar. See // http://sam.zoy.org/projects/COPYING.WTFPL for more details. // #if defined HAVE_CONFIG_H # include "config.h" #endif #include #include #include "core.h" using namespace std; namespace lol { real::real() { m_mantissa = new uint32_t[BIGITS]; m_signexp = 0; } real::real(real const &x) { m_mantissa = new uint32_t[BIGITS]; memcpy(m_mantissa, x.m_mantissa, BIGITS * sizeof(uint32_t)); m_signexp = x.m_signexp; } real const &real::operator =(real const &x) { if (&x != this) { memcpy(m_mantissa, x.m_mantissa, BIGITS * sizeof(uint32_t)); m_signexp = x.m_signexp; } return *this; } real::~real() { delete[] m_mantissa; } real::real(float f) { new(this) real((double)f); } real::real(int i) { new(this) real((double)i); } real::real(unsigned int i) { new(this) real((double)i); } real::real(double d) { new(this) real(); union { double d; uint64_t x; } u = { d }; uint32_t sign = (u.x >> 63) << 31; uint32_t exponent = (u.x << 1) >> 53; switch (exponent) { case 0x00: m_signexp = sign; break; case 0x7ff: m_signexp = sign | 0x7fffffffu; break; default: m_signexp = sign | (exponent + (1 << 30) - (1 << 10)); break; } m_mantissa[0] = u.x >> 20; m_mantissa[1] = u.x << 12; memset(m_mantissa + 2, 0, (BIGITS - 2) * sizeof(m_mantissa[0])); } real::operator float() const { return (float)(double)(*this); } real::operator int() const { return (int)(double)(*this); } real::operator unsigned int() const { return (unsigned int)(double)(*this); } real::operator double() const { union { double d; uint64_t x; } u; /* Get sign */ u.x = m_signexp >> 31; u.x <<= 11; /* Compute new exponent */ uint32_t exponent = (m_signexp << 1) >> 1; int e = (int)exponent - (1 << 30) + (1 << 10); if (e < 0) u.x <<= 52; else if (e >= 0x7ff) { u.x |= 0x7ff; u.x <<= 52; } else { u.x |= e; /* Store mantissa if necessary */ u.x <<= 32; u.x |= m_mantissa[0]; u.x <<= 20; u.x |= m_mantissa[1] >> 12; /* Rounding */ u.x += (m_mantissa[1] >> 11) & 1; } return u.d; } real real::operator +() const { return *this; } real real::operator -() const { real ret = *this; ret.m_signexp ^= 0x80000000u; return ret; } real real::operator +(real const &x) const { if (x.m_signexp << 1 == 0) return *this; /* Ensure both arguments are positive. Otherwise, switch signs, * or replace + with -. */ if (m_signexp >> 31) return -(-*this + -x); if (x.m_signexp >> 31) return *this - (-x); /* Ensure *this has the larger exponent (no need for the mantissa to * be larger, as in subtraction). Otherwise, switch. */ if ((m_signexp << 1) < (x.m_signexp << 1)) return x + *this; real ret; int e1 = m_signexp - (1 << 30) + 1; int e2 = x.m_signexp - (1 << 30) + 1; int bigoff = (e1 - e2) / BIGIT_BITS; int off = e1 - e2 - bigoff * BIGIT_BITS; if (bigoff > BIGITS) return *this; ret.m_signexp = m_signexp; uint64_t carry = 0; for (int i = BIGITS; i--; ) { carry += m_mantissa[i]; if (i - bigoff >= 0) carry += x.m_mantissa[i - bigoff] >> off; if (off && i - bigoff > 0) carry += (x.m_mantissa[i - bigoff - 1] << (BIGIT_BITS - off)) & 0xffffffffu; else if (i - bigoff == 0) carry += (uint64_t)1 << (BIGIT_BITS - off); ret.m_mantissa[i] = carry; carry >>= BIGIT_BITS; } /* Renormalise in case we overflowed the mantissa */ if (carry) { carry--; for (int i = 0; i < BIGITS; i++) { uint32_t tmp = ret.m_mantissa[i]; ret.m_mantissa[i] = (carry << (BIGIT_BITS - 1)) | (tmp >> 1); carry = tmp & 1u; } ret.m_signexp++; } return ret; } real real::operator -(real const &x) const { if (x.m_signexp << 1 == 0) return *this; /* Ensure both arguments are positive. Otherwise, switch signs, * or replace - with +. */ if (m_signexp >> 31) return -(-*this + x); if (x.m_signexp >> 31) return (*this) + (-x); /* Ensure *this is larger than x */ if (*this < x) return -(x - *this); real ret; int e1 = m_signexp - (1 << 30) + 1; int e2 = x.m_signexp - (1 << 30) + 1; int bigoff = (e1 - e2) / BIGIT_BITS; int off = e1 - e2 - bigoff * BIGIT_BITS; if (bigoff > BIGITS) return *this; ret.m_signexp = m_signexp; int64_t carry = 0; for (int i = 0; i < bigoff; i++) { carry -= x.m_mantissa[BIGITS - 1 - i]; /* Emulates a signed shift */ carry >>= BIGIT_BITS; carry |= carry << BIGIT_BITS; } if (bigoff < BIGITS) carry -= x.m_mantissa[BIGITS - 1 - bigoff] & (((int64_t)1 << off) - 1); carry /= (int64_t)1 << off; for (int i = BIGITS; i--; ) { carry += m_mantissa[i]; if (i - bigoff >= 0) carry -= x.m_mantissa[i - bigoff] >> off; if (off && i - bigoff > 0) carry -= (x.m_mantissa[i - bigoff - 1] << (BIGIT_BITS - off)) & 0xffffffffu; else if (i - bigoff == 0) carry -= (uint64_t)1 << (BIGIT_BITS - off); ret.m_mantissa[i] = carry; carry >>= BIGIT_BITS; carry |= carry << BIGIT_BITS; } carry += 1; /* Renormalise if we underflowed the mantissa */ if (carry == 0) { /* How much do we need to shift the mantissa? FIXME: this could * be computed above */ off = 0; for (int i = 0; i < BIGITS; i++) { if (!ret.m_mantissa[i]) { off += BIGIT_BITS; continue; } for (uint32_t tmp = ret.m_mantissa[i]; tmp < 0x80000000u; tmp <<= 1) off++; break; } if (off == BIGITS * BIGIT_BITS) ret.m_signexp &= 0x80000000u; else { off++; /* Shift one more to get rid of the leading one */ ret.m_signexp -= off; bigoff = off / BIGIT_BITS; off -= bigoff * BIGIT_BITS; for (int i = 0; i < BIGITS; i++) { uint32_t tmp = 0; if (i + bigoff < BIGITS) tmp |= ret.m_mantissa[i + bigoff] << off; if (off && i + bigoff + 1 < BIGITS) tmp |= ret.m_mantissa[i + bigoff + 1] >> (BIGIT_BITS - off); ret.m_mantissa[i] = tmp; } } } return ret; } real real::operator *(real const &x) const { real ret; if (m_signexp << 1 == 0 || x.m_signexp << 1 == 0) { ret = (m_signexp << 1 == 0) ? *this : x; ret.m_signexp ^= x.m_signexp & 0x80000000u; return ret; } ret.m_signexp = (m_signexp ^ x.m_signexp) & 0x80000000u; int e = (m_signexp & 0x7fffffffu) - (1 << 30) + 1 + (x.m_signexp & 0x7fffffffu) - (1 << 30) + 1; /* Accumulate low order product; no need to store it, we just * want the carry value */ uint64_t carry = 0, hicarry = 0, prev; for (int i = 0; i < BIGITS; i++) { for (int j = 0; j < i + 1; j++) { prev = carry; carry += (uint64_t)m_mantissa[BIGITS - 1 - j] * (uint64_t)x.m_mantissa[BIGITS - 1 + j - i]; if (carry < prev) hicarry++; } carry >>= BIGIT_BITS; carry |= hicarry << BIGIT_BITS; hicarry >>= BIGIT_BITS; } for (int i = 0; i < BIGITS; i++) { for (int j = i + 1; j < BIGITS; j++) { prev = carry; carry += (uint64_t)m_mantissa[BIGITS - 1 - j] * (uint64_t)x.m_mantissa[j - 1 - i]; if (carry < prev) hicarry++; } prev = carry; carry += m_mantissa[BIGITS - 1 - i]; carry += x.m_mantissa[BIGITS - 1 - i]; if (carry < prev) hicarry++; ret.m_mantissa[BIGITS - 1 - i] = carry & 0xffffffffu; carry >>= BIGIT_BITS; carry |= hicarry << BIGIT_BITS; hicarry >>= BIGIT_BITS; } /* Renormalise in case we overflowed the mantissa */ if (carry) { carry--; for (int i = 0; i < BIGITS; i++) { uint32_t tmp = ret.m_mantissa[i]; ret.m_mantissa[i] = (carry << (BIGIT_BITS - 1)) | (tmp >> 1); carry = tmp & 1u; } e++; } ret.m_signexp |= e + (1 << 30) - 1; return ret; } real real::operator /(real const &x) const { return *this * re(x); } real const &real::operator +=(real const &x) { real tmp = *this; return *this = tmp + x; } real const &real::operator -=(real const &x) { real tmp = *this; return *this = tmp - x; } real const &real::operator *=(real const &x) { real tmp = *this; return *this = tmp * x; } real const &real::operator /=(real const &x) { real tmp = *this; return *this = tmp / x; } real real::operator <<(int x) const { real tmp = *this; return tmp <<= x; } real real::operator >>(int x) const { real tmp = *this; return tmp >>= x; } real const &real::operator <<=(int x) { if (m_signexp << 1) m_signexp += x; return *this; } real const &real::operator >>=(int x) { if (m_signexp << 1) m_signexp -= x; return *this; } bool real::operator ==(real const &x) const { if ((m_signexp << 1) == 0 && (x.m_signexp << 1) == 0) return true; if (m_signexp != x.m_signexp) return false; return memcmp(m_mantissa, x.m_mantissa, BIGITS * sizeof(uint32_t)) == 0; } bool real::operator !=(real const &x) const { return !(*this == x); } bool real::operator <(real const &x) const { /* Ensure both numbers are positive */ if (m_signexp >> 31) return (x.m_signexp >> 31) ? -*this > -x : true; if (x.m_signexp >> 31) return false; /* Compare all relevant bits */ if (m_signexp != x.m_signexp) return m_signexp < x.m_signexp; for (int i = 0; i < BIGITS; i++) if (m_mantissa[i] != x.m_mantissa[i]) return m_mantissa[i] < x.m_mantissa[i]; return false; } bool real::operator <=(real const &x) const { return !(*this > x); } bool real::operator >(real const &x) const { /* Ensure both numbers are positive */ if (m_signexp >> 31) return (x.m_signexp >> 31) ? -*this < -x : false; if (x.m_signexp >> 31) return true; /* Compare all relevant bits */ if (m_signexp != x.m_signexp) return m_signexp > x.m_signexp; for (int i = 0; i < BIGITS; i++) if (m_mantissa[i] != x.m_mantissa[i]) return m_mantissa[i] > x.m_mantissa[i]; return false; } bool real::operator >=(real const &x) const { return !(*this < x); } bool real::operator !() const { return !(bool)*this; } real::operator bool() const { /* A real is "true" if it is non-zero (exponent is non-zero) AND * not NaN (exponent is not full bits OR higher order mantissa is zero) */ uint32_t exponent = m_signexp << 1; return exponent && (~exponent || m_mantissa[0] == 0); } real re(real const &x) { if (!(x.m_signexp << 1)) { real ret = x; ret.m_signexp = x.m_signexp | 0x7fffffffu; ret.m_mantissa[0] = 0; return ret; } /* Use the system's float inversion to approximate 1/x */ union { float f; uint32_t x; } u = { 1.0f }, v = { 1.0f }; v.x |= x.m_mantissa[0] >> 9; v.f = 1.0 / v.f; real ret; ret.m_mantissa[0] = v.x << 9; uint32_t sign = x.m_signexp & 0x80000000u; ret.m_signexp = sign; int exponent = (x.m_signexp & 0x7fffffffu) + 1; exponent = -exponent + (v.x >> 23) - (u.x >> 23); ret.m_signexp |= (exponent - 1) & 0x7fffffffu; /* FIXME: 1+log2(BIGITS) steps of Newton-Raphson seems to be enough for * convergence, but this hasn't been checked seriously. */ for (int i = 1; i <= real::BIGITS; i *= 2) ret = ret * (real::R_2 - ret * x); return ret; } real sqrt(real const &x) { /* if zero, return x */ if (!(x.m_signexp << 1)) return x; /* if negative, return NaN */ if (x.m_signexp >> 31) { real ret; ret.m_signexp = 0x7fffffffu; ret.m_mantissa[0] = 0xffffu; return ret; } /* Use the system's float inversion to approximate 1/sqrt(x). First * we construct a float in the [1..4[ range that has roughly the same * mantissa as our real. Its exponent is 0 or 1, depending on the * partity of x. The final exponent is 0, -1 or -2. We use the final * exponent and final mantissa to pre-fill the result. */ union { float f; uint32_t x; } u = { 1.0f }, v = { 2.0f }; v.x -= ((x.m_signexp & 1) << 23); v.x |= x.m_mantissa[0] >> 9; v.f = 1.0 / sqrtf(v.f); real ret; ret.m_mantissa[0] = v.x << 9; uint32_t sign = x.m_signexp & 0x80000000u; ret.m_signexp = sign; uint32_t exponent = (x.m_signexp & 0x7fffffffu); exponent = ((1 << 30) + (1 << 29) - 1) - (exponent + 1) / 2; exponent = exponent + (v.x >> 23) - (u.x >> 23); ret.m_signexp |= exponent & 0x7fffffffu; /* FIXME: 1+log2(BIGITS) steps of Newton-Raphson seems to be enough for * convergence, but this hasn't been checked seriously. */ for (int i = 1; i <= real::BIGITS; i *= 2) { ret = ret * (real::R_3 - ret * ret * x); ret.m_signexp--; } return ret * x; } real cbrt(real const &x) { /* if zero, return x */ if (!(x.m_signexp << 1)) return x; /* Use the system's float inversion to approximate cbrt(x). First * we construct a float in the [1..8[ range that has roughly the same * mantissa as our real. Its exponent is 0, 1 or 2, depending on the * value of x. The final exponent is 0 or 1 (special case). We use * the final exponent and final mantissa to pre-fill the result. */ union { float f; uint32_t x; } u = { 1.0f }, v = { 1.0f }; v.x += ((x.m_signexp % 3) << 23); v.x |= x.m_mantissa[0] >> 9; v.f = powf(v.f, 0.33333333333333333f); real ret; ret.m_mantissa[0] = v.x << 9; uint32_t sign = x.m_signexp & 0x80000000u; ret.m_signexp = sign; int exponent = (x.m_signexp & 0x7fffffffu) - (1 << 30) + 1; exponent = exponent / 3 + (v.x >> 23) - (u.x >> 23); ret.m_signexp |= (exponent + (1 << 30) - 1) & 0x7fffffffu; /* FIXME: 1+log2(BIGITS) steps of Newton-Raphson seems to be enough for * convergence, but this hasn't been checked seriously. */ for (int i = 1; i <= real::BIGITS; i *= 2) { static real third = re(real::R_3); ret = third * (x / (ret * ret) + (ret << 1)); } return ret; } real pow(real const &x, real const &y) { if (!y) return real::R_1; if (!x) return real::R_0; if (x > real::R_0) return exp(y * log(x)); else /* x < 0 */ { if (y == round(y)) return -exp(y * log(-x)); /* FIXME: negative nth root */ return real::R_0; } } real gamma(real const &x) { /* We use Spouge's formula. FIXME: precision is far from acceptable, * especially with large values. We need to compute this with higher * precision values in order to attain the desired accuracy. It might * also be useful to sort the ck values by decreasing absolute value * and do the addition in this order. */ int a = ceilf(logf(2) / logf(2 * M_PI) * real::BIGITS * real::BIGIT_BITS); real ret = sqrt(real::R_PI << 1); real fact_k_1 = real::R_1; for (int k = 1; k < a; k++) { real a_k = (real)(a - k); real ck = pow(a_k, (real)((float)k - 0.5)) * exp(a_k) / (fact_k_1 * (x + (real)(k - 1))); ret += ck; fact_k_1 *= (real)-k; } ret *= pow(x + (real)(a - 1), x - (real::R_1 >> 1)); ret *= exp(-x - (real)(a - 1)); return ret; } real fabs(real const &x) { real ret = x; ret.m_signexp &= 0x7fffffffu; return ret; } static real fast_log(real const &x) { /* This fast log method is tuned to work on the [1..2] range and * no effort whatsoever was made to improve convergence outside this * domain of validity. It can converge pretty fast, provided we use * the following variable substitutions: * y = sqrt(x) * z = (y - 1) / (y + 1) * * And the following identities: * ln(x) = 2 ln(y) * = 2 ln((1 + z) / (1 - z)) * = 4 z (1 + z^2 / 3 + z^4 / 5 + z^6 / 7...) * * Any additional sqrt() call would halve the convergence time, but * would also impact the final precision. For now we stick with one * sqrt() call. */ real y = sqrt(x); real z = (y - real::R_1) / (y + real::R_1), z2 = z * z, zn = z2; real sum = real::R_1; for (int i = 3; ; i += 2) { real newsum = sum + zn / (real)i; if (newsum == sum) break; sum = newsum; zn *= z2; } return z * (sum << 2); } real log(real const &x) { /* Strategy for log(x): if x = 2^E*M then log(x) = E log(2) + log(M), * with the property that M is in [1..2[, so fast_log() applies here. */ real tmp = x; if (x.m_signexp >> 31 || x.m_signexp == 0) { tmp.m_signexp = 0xffffffffu; tmp.m_mantissa[0] = 0xffffffffu; return tmp; } tmp.m_signexp = (1 << 30) - 1; return (real)(int)(x.m_signexp - (1 << 30) + 1) * real::R_LN2 + fast_log(tmp); } real log2(real const &x) { /* Strategy for log2(x): see log(x). */ real tmp = x; if (x.m_signexp >> 31 || x.m_signexp == 0) { tmp.m_signexp = 0xffffffffu; tmp.m_mantissa[0] = 0xffffffffu; return tmp; } tmp.m_signexp = (1 << 30) - 1; return (real)(int)(x.m_signexp - (1 << 30) + 1) + fast_log(tmp) * real::R_LOG2E; } real log10(real const &x) { return log(x) * real::R_LOG10E; } static real fast_exp_sub(real const &x, real const &y) { /* This fast exp method is tuned to work on the [-1..1] range and * no effort whatsoever was made to improve convergence outside this * domain of validity. The argument y is used for cases where we * don't want the leading 1 in the Taylor series. */ real ret = real::R_1 - y, fact = real::R_1, xn = x; for (int i = 1; ; i++) { real newret = ret + xn; if (newret == ret) break; ret = newret; real mul = (i + 1); fact *= mul; ret *= mul; xn *= x; } ret /= fact; return ret; } real exp(real const &x) { /* Strategy for exp(x): the Taylor series does not converge very fast * with large positive or negative values. * * However, we know that the result is going to be in the form M*2^E, * where M is the mantissa and E the exponent. We first try to predict * a value for E, which is approximately log2(exp(x)) = x / log(2). * * Let E0 be an integer close to x / log(2). We need to find a value x0 * such that exp(x) = 2^E0 * exp(x0). We get x0 = x - E0 log(2). * * Thus the final algorithm: * int E0 = x / log(2) * real x0 = x - E0 log(2) * real x1 = exp(x0) * return x1 * 2^E0 */ int e0 = x / real::R_LN2; real x0 = x - (real)e0 * real::R_LN2; real x1 = fast_exp_sub(x0, real::R_0); x1.m_signexp += e0; return x1; } real exp2(real const &x) { /* Strategy for exp2(x): see strategy in exp(). */ int e0 = x; real x0 = x - (real)e0; real x1 = fast_exp_sub(x0 * real::R_LN2, real::R_0); x1.m_signexp += e0; return x1; } real sinh(real const &x) { /* We cannot always use (exp(x)-exp(-x))/2 because we'll lose * accuracy near zero. We only use this identity for |x|>0.5. If * |x|<=0.5, we compute exp(x)-1 and exp(-x)-1 instead. */ bool near_zero = (fabs(x) < real::R_1 >> 1); real x1 = near_zero ? fast_exp_sub(x, real::R_1) : exp(x); real x2 = near_zero ? fast_exp_sub(-x, real::R_1) : exp(-x); return (x1 - x2) >> 1; } real tanh(real const &x) { /* See sinh() for the strategy here */ bool near_zero = (fabs(x) < real::R_1 >> 1); real x1 = near_zero ? fast_exp_sub(x, real::R_1) : exp(x); real x2 = near_zero ? fast_exp_sub(-x, real::R_1) : exp(-x); real x3 = near_zero ? x1 + x2 + real::R_2 : x1 + x2; return (x1 - x2) / x3; } real cosh(real const &x) { /* No need to worry about accuracy here; maybe the last bit is slightly * off, but that's about it. */ return (exp(x) + exp(-x)) >> 1; } real frexp(real const &x, int *exp) { if (!x) { *exp = 0; return x; } real ret = x; int exponent = (ret.m_signexp & 0x7fffffffu) - (1 << 30) + 1; *exp = exponent + 1; ret.m_signexp -= exponent + 1; return ret; } real ldexp(real const &x, int exp) { real ret = x; if (ret) ret.m_signexp += exp; return ret; } real modf(real const &x, real *iptr) { real absx = fabs(x); real tmp = floor(absx); *iptr = copysign(tmp, x); return copysign(absx - tmp, x); } real copysign(real const &x, real const &y) { real ret = x; ret.m_signexp &= 0x7fffffffu; ret.m_signexp |= y.m_signexp & 0x80000000u; return ret; } real floor(real const &x) { /* Strategy for floor(x): * - if negative, return -ceil(-x) * - if zero or negative zero, return x * - if less than one, return zero * - otherwise, if e is the exponent, clear all bits except the * first e. */ if (x < -real::R_0) return -ceil(-x); if (!x) return x; if (x < real::R_1) return real::R_0; real ret = x; int exponent = x.m_signexp - (1 << 30) + 1; for (int i = 0; i < real::BIGITS; i++) { if (exponent <= 0) ret.m_mantissa[i] = 0; else if (exponent < real::BIGIT_BITS) ret.m_mantissa[i] &= ~((1 << (real::BIGIT_BITS - exponent)) - 1); exponent -= real::BIGIT_BITS; } return ret; } real ceil(real const &x) { /* Strategy for ceil(x): * - if negative, return -floor(-x) * - if x == floor(x), return x * - otherwise, return floor(x) + 1 */ if (x < -real::R_0) return -floor(-x); real ret = floor(x); if (x == ret) return ret; else return ret + real::R_1; } real round(real const &x) { if (x < real::R_0) return -round(-x); return floor(x + (real::R_1 >> 1)); } real fmod(real const &x, real const &y) { if (!y) return real::R_0; /* FIXME: return NaN */ if (!x) return x; real tmp = round(x / y); return x - tmp * y; } real sin(real const &x) { bool switch_sign = x.m_signexp & 0x80000000u; real absx = fmod(fabs(x), real::R_PI << 1); if (absx > real::R_PI) { absx -= real::R_PI; switch_sign = !switch_sign; } if (absx > real::R_PI_2) absx = real::R_PI - absx; real ret = real::R_0, fact = real::R_1, xn = absx, mx2 = -absx * absx; for (int i = 1; ; i += 2) { real newret = ret + xn; if (newret == ret) break; ret = newret; real mul = (i + 1) * (i + 2); fact *= mul; ret *= mul; xn *= mx2; } ret /= fact; /* Propagate sign */ if (switch_sign) ret.m_signexp ^= 0x80000000u; return ret; } real cos(real const &x) { return sin(real::R_PI_2 - x); } real tan(real const &x) { /* Constrain input to [-π,π] */ real y = fmod(x, real::R_PI); /* Constrain input to [-π/2,π/2] */ if (y < -real::R_PI_2) y += real::R_PI; else if (y > real::R_PI_2) y -= real::R_PI; /* In [-π/4,π/4] return sin/cos */ if (fabs(y) <= real::R_PI_4) return sin(y) / cos(y); /* Otherwise, return cos/sin */ if (y > real::R_0) y = real::R_PI_2 - y; else y = -real::R_PI_2 - y; return cos(y) / sin(y); } static real asinacos(real const &x, bool is_asin, bool is_negative) { /* Strategy for asin(): in [-0.5..0.5], use a Taylor series around * zero. In [0.5..1], use asin(x) = π/2 - 2*asin(sqrt((1-x)/2)), and * in [-1..-0.5] just revert the sign. * Strategy for acos(): use acos(x) = π/2 - asin(x) and try not to * lose the precision around x=1. */ real absx = fabs(x); bool around_zero = (absx < (real::R_1 >> 1)); if (!around_zero) absx = sqrt((real::R_1 - absx) >> 1); real ret = absx, xn = absx, x2 = absx * absx, fact1 = 2, fact2 = 1; for (int i = 1; ; i++) { xn *= x2; real mul = (real)(2 * i + 1); real newret = ret + ((fact1 * xn / (mul * fact2)) >> (i * 2)); if (newret == ret) break; ret = newret; fact1 *= (real)((2 * i + 1) * (2 * i + 2)); fact2 *= (real)((i + 1) * (i + 1)); } if (is_negative) ret = -ret; if (around_zero) ret = is_asin ? ret : real::R_PI_2 - ret; else { real adjust = is_negative ? real::R_PI : real::R_0; if (is_asin) ret = real::R_PI_2 - adjust - (ret << 1); else ret = adjust + (ret << 1); } return ret; } real asin(real const &x) { return asinacos(x, true, x.m_signexp >> 31); } real acos(real const &x) { return asinacos(x, false, x.m_signexp >> 31); } real atan(real const &x) { /* Computing atan(x): we choose a different Taylor series depending on * the value of x to help with convergence. * * If |x| < 0.5 we evaluate atan(y) near 0: * atan(y) = y - y^3/3 + y^5/5 - y^7/7 + y^9/9 ... * * If 0.5 <= |x| < 1.5 we evaluate atan(1+y) near 0: * atan(1+y) = π/4 + y/(1*2^1) - y^2/(2*2^1) + y^3/(3*2^2) * - y^5/(5*2^3) + y^6/(6*2^3) - y^7/(7*2^4) * + y^9/(9*2^5) - y^10/(10*2^5) + y^11/(11*2^6) ... * * If 1.5 <= |x| < 2 we evaluate atan(sqrt(3)+2y) near 0: * atan(sqrt(3)+2y) = π/3 + 1/2 y - sqrt(3)/2 y^2/2 * + y^3/3 - sqrt(3)/2 y^4/4 + 1/2 y^5/5 * - 1/2 y^7/7 + sqrt(3)/2 y^8/8 * - y^9/9 + sqrt(3)/2 y^10/10 - 1/2 y^11/11 * + 1/2 y^13/13 - sqrt(3)/2 y^14/14 * + y^15/15 - sqrt(3)/2 y^16/16 + 1/2 y^17/17 ... * * If |x| >= 2 we evaluate atan(y) near +∞: * atan(y) = π/2 - y^-1 + y^-3/3 - y^-5/5 + y^-7/7 - y^-9/9 ... */ real absx = fabs(x); if (absx < (real::R_1 >> 1)) { real ret = x, xn = x, mx2 = -x * x; for (int i = 3; ; i += 2) { xn *= mx2; real newret = ret + xn / (real)i; if (newret == ret) break; ret = newret; } return ret; } real ret = 0; if (absx < (real::R_3 >> 1)) { real y = real::R_1 - absx; real yn = y, my2 = -y * y; for (int i = 0; ; i += 2) { real newret = ret + ((yn / (real)(2 * i + 1)) >> (i + 1)); yn *= y; newret += (yn / (real)(2 * i + 2)) >> (i + 1); yn *= y; newret += (yn / (real)(2 * i + 3)) >> (i + 2); if (newret == ret) break; ret = newret; yn *= my2; } ret = real::R_PI_4 - ret; } else if (absx < real::R_2) { real y = (absx - real::R_SQRT3) >> 1; real yn = y, my2 = -y * y; for (int i = 1; ; i += 6) { real newret = ret + ((yn / (real)i) >> 1); yn *= y; newret -= (real::R_SQRT3 >> 1) * yn / (real)(i + 1); yn *= y; newret += yn / (real)(i + 2); yn *= y; newret -= (real::R_SQRT3 >> 1) * yn / (real)(i + 3); yn *= y; newret += (yn / (real)(i + 4)) >> 1; if (newret == ret) break; ret = newret; yn *= my2; } ret = real::R_PI_3 + ret; } else { real y = re(absx); real yn = y, my2 = -y * y; ret = y; for (int i = 3; ; i += 2) { yn *= my2; real newret = ret + yn / (real)i; if (newret == ret) break; ret = newret; } ret = real::R_PI_2 - ret; } /* Propagate sign */ ret.m_signexp |= (x.m_signexp & 0x80000000u); return ret; } real atan2(real const &y, real const &x) { if (!y) { if ((x.m_signexp >> 31) == 0) return y; if (y.m_signexp >> 31) return -real::R_PI; return real::R_PI; } if (!x) { if (y.m_signexp >> 31) return -real::R_PI; return real::R_PI; } /* FIXME: handle the Inf and NaN cases */ real z = y / x; real ret = atan(z); if (x < real::R_0) ret += (y > real::R_0) ? real::R_PI : -real::R_PI; return ret; } void real::hexprint() const { printf("%08x", m_signexp); for (int i = 0; i < BIGITS; i++) printf(" %08x", m_mantissa[i]); printf("\n"); } void real::print(int ndigits) const { real x = *this; if (x.m_signexp >> 31) { printf("-"); x = -x; } /* Normalise x so that mantissa is in [1..9.999] */ int exponent = 0; if (x.m_signexp) { for (real div = R_1, newdiv; true; div = newdiv) { newdiv = div * R_10; if (x < newdiv) { x /= div; break; } exponent++; } for (real mul = 1, newx; true; mul *= R_10) { newx = x * mul; if (newx >= R_1) { x = newx; break; } exponent--; } } /* Print digits */ for (int i = 0; i < ndigits; i++) { int digit = (int)x; printf("%i", digit); if (i == 0) printf("."); x -= real(digit); x *= R_10; } /* Print exponent information */ if (exponent < 0) printf("e-%i", -exponent); else if (exponent > 0) printf("e+%i", exponent); printf("\n"); } static real fast_pi() { /* Approximate Pi using Machin's formula: 16*atan(1/5)-4*atan(1/239) */ real ret = 0.0, x0 = 5.0, x1 = 239.0; real const m0 = -x0 * x0, m1 = -x1 * x1, r16 = 16.0, r4 = 4.0; for (int i = 1; ; i += 2) { real newret = ret + r16 / (x0 * (real)i) - r4 / (x1 * (real)i); if (newret == ret) break; ret = newret; x0 *= m0; x1 *= m1; } return ret; } real const real::R_0 = (real)0.0; real const real::R_1 = (real)1.0; real const real::R_2 = (real)2.0; real const real::R_3 = (real)3.0; real const real::R_10 = (real)10.0; real const real::R_LN2 = fast_log(R_2); real const real::R_LN10 = log(R_10); real const real::R_LOG2E = re(R_LN2); real const real::R_LOG10E = re(R_LN10); real const real::R_E = exp(R_1); real const real::R_PI = fast_pi(); real const real::R_PI_2 = R_PI >> 1; real const real::R_PI_3 = R_PI / R_3; real const real::R_PI_4 = R_PI >> 2; real const real::R_1_PI = re(R_PI); real const real::R_2_PI = R_1_PI << 1; real const real::R_2_SQRTPI = re(sqrt(R_PI)) << 1; real const real::R_SQRT2 = sqrt(R_2); real const real::R_SQRT3 = sqrt(R_3); real const real::R_SQRT1_2 = R_SQRT2 >> 1; } /* namespace lol */