// // LolRemez - Remez algorithm implementation // // Copyright: (c) 2005-2013 Sam Hocevar // This program is free software; you can redistribute it and/or // modify it under the terms of the Do What The Fuck You Want To // Public License, Version 2, as published by Sam Hocevar. See // http://www.wtfpl.net/ for more details. // #if defined HAVE_CONFIG_H # include "config.h" #endif #include "core.h" #include #include "matrix.h" #include "solver.h" using lol::real; RemezSolver::RemezSolver(int order, int decimals) : m_order(order), m_decimals(decimals) { } void RemezSolver::Run(real a, real b, RemezSolver::RealFunc *func, RemezSolver::RealFunc *weight) { using std::printf; m_func = func; m_weight = weight; m_k1 = (b + a) / 2; m_k2 = (b - a) / 2; m_invk2 = re(m_k2); m_invk1 = -m_k1 * m_invk2; m_epsilon = pow((real)10, (real)-(m_decimals + 2)); Init(); PrintPoly(); real error = -1; for (int n = 0; ; n++) { real newerror = FindExtrema(); printf("Step %i error: ", n); newerror.print(m_decimals); printf("\n"); Step(); if (error >= (real)0 && fabs(newerror - error) < error * m_epsilon) break; error = newerror; PrintPoly(); FindZeroes(); } PrintPoly(); } real RemezSolver::EvalCheby(real const &x) { real ret = 0.0, xn = 1.0; for (int i = 0; i < m_order + 1; i++) { real mul = 0; for (int j = 0; j < m_order + 1; j++) mul += m_coeff[j] * (real)Cheby(j, i); ret += mul * xn; xn *= x; } return ret; } void RemezSolver::Init() { /* m_order + 1 Chebyshev coefficients, plus 1 error value */ m_coeff.Resize(m_order + 2); /* m_order + 1 zeroes of the error function */ m_zeroes.Resize(m_order + 1); /* m_order + 2 control points */ m_control.Resize(m_order + 2); /* Pick up x_i where error will be 0 and compute f(x_i) */ real fxn[m_order + 1]; for (int i = 0; i < m_order + 1; i++) { m_zeroes[i] = (real)(2 * i - m_order) / (real)(m_order + 1); fxn[i] = EvalFunc(m_zeroes[i]); } /* We build a matrix of Chebishev evaluations: row i contains the * evaluations of x_i for polynomial order n = 0, 1, ... */ Matrix mat(m_order + 1, m_order + 1); for (int i = 0; i < m_order + 1; i++) { /* Compute the powers of x_i */ real powers[m_order + 1]; powers[0] = 1.0; for (int n = 1; n < m_order + 1; n++) powers[n] = powers[n - 1] * m_zeroes[i]; /* Compute the Chebishev evaluations at x_i */ for (int n = 0; n < m_order + 1; n++) { real sum = 0.0; for (int k = 0; k < m_order + 1; k++) sum += (real)Cheby(n, k) * powers[k]; mat.m(i, n) = sum; } } /* Solve the system */ mat = mat.inv(); /* Compute interpolation coefficients */ for (int j = 0; j < m_order + 1; j++) { m_coeff[j] = 0; for (int i = 0; i < m_order + 1; i++) m_coeff[j] += mat.m(j, i) * fxn[i]; } } void RemezSolver::FindZeroes() { /* Find m_order + 1 zeroes of the error function. No need to * compute the relative error: its zeroes are at the same * place as the absolute error! */ for (int i = 0; i < m_order + 1; i++) { struct { real value, error; } left, right, mid; left.value = m_control[i]; left.error = EvalCheby(left.value) - EvalFunc(left.value); right.value = m_control[i + 1]; right.error = EvalCheby(right.value) - EvalFunc(right.value); static real limit = ldexp((real)1, -500); static real zero = (real)0; while (fabs(left.value - right.value) > limit) { mid.value = (left.value + right.value) / 2; mid.error = EvalCheby(mid.value) - EvalFunc(mid.value); if ((left.error <= zero && mid.error <= zero) || (left.error >= zero && mid.error >= zero)) left = mid; else right = mid; } m_zeroes[i] = mid.value; } } real RemezSolver::FindExtrema() { using std::printf; /* Find m_order + 2 extrema of the error function. We need to * compute the relative error, since its extrema are at slightly * different locations than the absolute error’s. */ real final = 0; for (int i = 0; i < m_order + 2; i++) { real a = -1, b = 1; if (i > 0) a = m_zeroes[i - 1]; if (i < m_order + 1) b = m_zeroes[i]; for (int round = 0; ; round++) { real maxerror = 0, maxweight = 0; int best = -1; real c = a, delta = (b - a) / 4; for (int k = 0; k <= 4; k++) { if (round == 0 || (k & 1)) { real error = fabs(EvalCheby(c) - EvalFunc(c)); real weight = fabs(Weight(c)); /* if error/weight >= maxerror/maxweight */ if (error * maxweight >= maxerror * weight) { maxerror = error; maxweight = weight; best = k; } } c += delta; } switch (best) { case 0: b = a + delta * 2; break; case 4: a = b - delta * 2; break; default: b = a + delta * (best + 1); a = a + delta * (best - 1); break; } if (delta < m_epsilon) { real e = fabs(maxerror / maxweight); if (e > final) final = e; m_control[i] = (a + b) / 2; break; } } } return final; } void RemezSolver::Step() { /* Pick up x_i where error will be 0 and compute f(x_i) */ real fxn[m_order + 2]; for (int i = 0; i < m_order + 2; i++) fxn[i] = EvalFunc(m_control[i]); /* We build a matrix of Chebishev evaluations: row i contains the * evaluations of x_i for polynomial order n = 0, 1, ... */ Matrix mat(m_order + 2, m_order + 2); for (int i = 0; i < m_order + 2; i++) { /* Compute the powers of x_i */ real powers[m_order + 1]; powers[0] = 1.0; for (int n = 1; n < m_order + 1; n++) powers[n] = powers[n - 1] * m_control[i]; /* Compute the Chebishev evaluations at x_i */ for (int n = 0; n < m_order + 1; n++) { real sum = 0.0; for (int k = 0; k < m_order + 1; k++) sum += (real)Cheby(n, k) * powers[k]; mat.m(i, n) = sum; } if (i & 1) mat.m(i, m_order + 1) = fabs(Weight(m_control[i])); else mat.m(i, m_order + 1) = -fabs(Weight(m_control[i])); } /* Solve the system */ mat = mat.inv(); /* Compute interpolation coefficients */ for (int j = 0; j < m_order + 1; j++) { m_coeff[j] = 0; for (int i = 0; i < m_order + 2; i++) m_coeff[j] += mat.m(j, i) * fxn[i]; } /* Compute the error */ real error = 0; for (int i = 0; i < m_order + 2; i++) error += mat.m(m_order + 1, i) * fxn[i]; } int RemezSolver::Cheby(int n, int k) { if (k > n || k < 0) return 0; if (n <= 1) return (n ^ k ^ 1) & 1; return 2 * Cheby(n - 1, k - 1) - Cheby(n - 2, k); } int RemezSolver::Comb(int n, int k) { if (k == 0 || k == n) return 1; return Comb(n - 1, k - 1) + Comb(n - 1, k); } void RemezSolver::PrintPoly() { using std::printf; /* Transform Chebyshev polynomial weights into powers of X^i * in the [-1..1] range. */ real bn[m_order + 1]; for (int i = 0; i < m_order + 1; i++) { bn[i] = 0; for (int j = 0; j < m_order + 1; j++) bn[i] += m_coeff[j] * (real)Cheby(j, i); } /* Transform a polynomial in the [-1..1] range into a polynomial * in the [a..b] range. */ real k1p[m_order + 1], k2p[m_order + 1]; real an[m_order + 1]; for (int i = 0; i < m_order + 1; i++) { k1p[i] = i ? k1p[i - 1] * m_invk1 : (real)1; k2p[i] = i ? k2p[i - 1] * m_invk2 : (real)1; } for (int i = 0; i < m_order + 1; i++) { an[i] = 0; for (int j = i; j < m_order + 1; j++) an[i] += (real)Comb(j, i) * k1p[j - i] * bn[j]; an[i] *= k2p[i]; } printf("Polynomial estimate: "); for (int j = 0; j < m_order + 1; j++) { if (j) printf(" + x**%i * ", j); an[j].print(m_decimals); } printf("\n\n"); } real RemezSolver::EvalFunc(real const &x) { return m_func(x * m_k2 + m_k1); } real RemezSolver::Weight(real const &x) { if (m_weight) return m_weight(x * m_k2 + m_k1); return 1; }