You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

762 lines
25 KiB

  1. //
  2. // Lol Engine — BtPhys tutorial
  3. //
  4. // Copyright © 2012—2020 Sam Hocevar <sam@hocevar.net>
  5. // © 2009—2015 Benjamin “Touky” Huet <huet.benjamin@gmail.com>
  6. //
  7. // Lol Engine is free software. It comes without any warranty, to
  8. // the extent permitted by applicable law. You can redistribute it
  9. // and/or modify it under the terms of the Do What the Fuck You Want
  10. // to Public License, Version 2, as published by the WTFPL Task Force.
  11. // See http://www.wtfpl.net/ for more details.
  12. //
  13. #if HAVE_CONFIG_H
  14. # include "config.h"
  15. #endif
  16. #include <lol/engine.h>
  17. #include <lol/color>
  18. #include "loldebug.h"
  19. using namespace lol;
  20. #include "physics/lolphysics.h"
  21. #include "physics/easyphysics.h"
  22. #define CAT_MODE 0
  23. #define OBJ_SIZE 2.f
  24. #define NB_SPRITE 4
  25. #define PARTICLE_SIZE 4
  26. #include "physicobject.h"
  27. #include "btphystest.h"
  28. using namespace lol::phys;
  29. #define CUBE_HALF_EXTENTS .5f
  30. #define EXTRA_HEIGHT 1.f
  31. #define BASE_TIME 2.f
  32. #define ZERO_TIME (BASE_TIME + rand(-BASE_TIME * .4f, BASE_TIME * .4f))
  33. #define ZERO_SPEED 3.5f
  34. #define JUMP_HEIGHT 30.f
  35. #define JUMP_STRAFE .5f
  36. #define TARGET_TIMER 10.f + (rand(4.f) - 2.f)
  37. int gNumObjects = 16;
  38. #if CAT_MODE
  39. #define USE_WALL 1
  40. #define USE_BODIES 1
  41. #else
  42. #define USE_WALL 1
  43. #define USE_PLATFORM 0
  44. #define USE_ROPE 0
  45. #define USE_BODIES 1
  46. #define USE_ROTATION 1
  47. #define USE_CHARACTER 0
  48. #define USE_STAIRS 0
  49. #endif
  50. LOLFX_RESOURCE_DECLARE(front_camera_sprite);
  51. BtPhysTest::BtPhysTest(bool editor)
  52. {
  53. m_init_status = 0;
  54. }
  55. void BtPhysTest::InitApp()
  56. {
  57. m_init_status = 1;
  58. m_loop_value = .0f;
  59. #if CAT_MODE
  60. /* cat datas setup */
  61. m_cat_texture = Tiler::Register("data/CatsSheet.png", ivec2::zero, ivec2(0,1));
  62. m_fov_dp = .0f;
  63. m_loc_dp = .0f;
  64. #endif //CAT_MODE
  65. /* Create a camera that matches the settings of XNA BtPhysTest */
  66. m_camera = new Camera();
  67. #if CAT_MODE
  68. m_camera->SetView(vec3(70.f, 50.f, 0.f),
  69. vec3(0.f, 0.f, 0.f),
  70. vec3(0, 1, 0));
  71. m_camera->SetProjection(radians(60.f), .1f, 1000.f, (float)Video::GetSize().x, (float)Video::GetSize().y / (float)Video::GetSize().x);
  72. m_target_timer = TARGET_TIMER;
  73. m_cam_target = -1;
  74. #else
  75. m_camera->SetView(vec3(50.f, 50.f, 0.f),
  76. vec3(0.f, 0.f, 0.f),
  77. vec3(0, 1, 0));
  78. m_camera->SetProjection(radians(45.f), .1f, 1000.f, (float)Video::GetSize().x, (float)Video::GetSize().y / (float)Video::GetSize().x);
  79. #endif
  80. Scene& scene = Scene::GetScene();
  81. scene.PushCamera(m_camera);
  82. m_ready = false;
  83. m_simulation = new Simulation();
  84. m_simulation->SetWorldLimit(vec3(-1000.0f, -1000.0f, -1000.0f), vec3(1000.0f, 1000.0f, 1000.0f));
  85. m_simulation->Init();
  86. vec3 NewGravity = vec3(.0f, -10.0f, .0f);
  87. m_simulation->SetGravity(NewGravity);
  88. m_simulation->SetContinuousDetection(true);
  89. m_simulation->SetTimestep(1.f / 120.f);
  90. Ticker::Ref(m_simulation);
  91. /* Add a white directional light */
  92. m_light1 = new Light();
  93. m_light1->SetPosition(vec3(0.2f, 0.2f, 0.f));
  94. m_light1->SetColor(vec4(0.5f, 0.5f, 0.5f, 1.f));
  95. m_light1->SetType(LightType::Directional);
  96. Ticker::Ref(m_light1);
  97. /* Add an orangeish point light */
  98. m_light2 = new Light();
  99. m_light2->SetPosition(vec3(-15.f, 15.f, 15.f));
  100. m_light2->SetColor(vec4(0.4f, 0.3f, 0.2f, 1.f));
  101. m_light2->SetType(LightType::Point);
  102. Ticker::Ref(m_light2);
  103. float offset = 29.5f;
  104. vec3 pos_offset = vec3(.0f, 30.f, .0f);
  105. #if USE_STAIRS
  106. {
  107. vec3 new_offset = vec3(1.0f, .125f, .0f);
  108. quat NewRotation = quat::fromeuler_xyz(0.f, 0.f, 0.f);
  109. vec3 NewPosition = pos_offset + vec3(5.0f, -29.f, 15.0f);
  110. {
  111. NewRotation = quat::fromeuler_xyz(0.f, 0.f, radians(30.f));
  112. NewPosition += vec3(4.0f, .0f, -4.0f);
  113. PhysicsObject* NewPhyobj = new PhysicsObject(m_simulation, NewPosition, NewRotation, 3);
  114. Ticker::Ref(NewPhyobj);
  115. m_stairs_list.push_back(NewPhyobj);
  116. }
  117. {
  118. NewRotation = quat::fromeuler_xyz(0.f, 0.f, radians(40.f));
  119. NewPosition += vec3(4.0f, .0f, -4.0f);
  120. PhysicsObject* NewPhyobj = new PhysicsObject(m_simulation, NewPosition, NewRotation, 3);
  121. Ticker::Ref(NewPhyobj);
  122. m_stairs_list.push_back(NewPhyobj);
  123. }
  124. NewPosition = pos_offset + vec3(5.0f, -29.5f, 15.0f);
  125. NewRotation = quat::fromeuler_xyz(0.f, 0.f, 0.f);
  126. for (int i=0; i < 15; i++)
  127. {
  128. NewPosition += new_offset;
  129. PhysicsObject* NewPhyobj = new PhysicsObject(m_simulation, NewPosition, NewRotation, 3);
  130. Ticker::Ref(NewPhyobj);
  131. m_stairs_list.push_back(NewPhyobj);
  132. }
  133. }
  134. #endif //USE_STAIRS
  135. #if USE_WALL
  136. {
  137. for (int i=0; i < 6; i++)
  138. {
  139. vec3 NewPosition = vec3(.0f);
  140. quat NewRotation = quat(1.f);
  141. PhysicsObject* NewPhyobj = new PhysicsObject(m_simulation, NewPosition, NewRotation);
  142. int idx = i/2;
  143. NewPosition = pos_offset;
  144. NewPosition[idx] += offset;
  145. offset *= -1.f;
  146. if (idx != 1)
  147. {
  148. vec3 NewAxis = vec3(.0f);
  149. NewAxis[2 - idx] = 1;
  150. NewRotation = quat::rotate(radians(90.f), NewAxis);
  151. }
  152. NewPhyobj->SetTransform(NewPosition, NewRotation);
  153. Ticker::Ref(NewPhyobj);
  154. m_ground_list.push_back(NewPhyobj);
  155. }
  156. }
  157. #endif //USE_WALL
  158. PhysicsObject* BasePhyobj = nullptr;
  159. #if USE_PLATFORM
  160. {
  161. quat NewRotation = quat::fromeuler_xyz(0.f, 0.f, 0.f);
  162. vec3 NewPosition = pos_offset + vec3(5.0f, -25.0f, -15.0f);
  163. PhysicsObject* NewPhyobj = new PhysicsObject(m_simulation, NewPosition, NewRotation, 1);
  164. m_platform_list.push_back(NewPhyobj);
  165. Ticker::Ref(NewPhyobj);
  166. NewPosition = pos_offset + vec3(-15.0f, -25.0f, 5.0f);
  167. NewPhyobj = new PhysicsObject(m_simulation, NewPosition, NewRotation, 1);
  168. BasePhyobj = NewPhyobj;
  169. m_platform_list.push_back(NewPhyobj);
  170. Ticker::Ref(NewPhyobj);
  171. NewRotation = quat::fromeuler_xyz(0.f, 0.f, radians(90.f));
  172. NewPosition = pos_offset + vec3(-20.0f, -25.0f, 5.0f);
  173. NewPhyobj = new PhysicsObject(m_simulation, NewPosition, NewRotation, 1);
  174. NewPhyobj->GetPhysic()->AttachTo(BasePhyobj->GetPhysic(), true, true);
  175. m_platform_list.push_back(NewPhyobj);
  176. Ticker::Ref(NewPhyobj);
  177. //NewPosition += vec3(-0.0f, .0f, .0f);
  178. //NewPhyobj = new PhysicsObject(m_simulation, NewPosition, NewRotation, 1);
  179. //NewPhyobj->GetPhysic()->AttachTo(BasePhyobj->GetPhysic(), true, false);
  180. //m_platform_list.push_back(NewPhyobj);
  181. //Ticker::Ref(NewPhyobj);
  182. //NewPosition += vec3(-2.0f, .0f, .0f);
  183. //NewPhyobj = new PhysicsObject(m_simulation, NewPosition, NewRotation, 1);
  184. //NewPhyobj->GetPhysic()->AttachTo(BasePhyobj->GetPhysic(), false, false);
  185. //m_platform_list.push_back(NewPhyobj);
  186. //Ticker::Ref(NewPhyobj);
  187. }
  188. #endif //USE_PLATFORM
  189. #if USE_CHARACTER
  190. {
  191. quat NewRotation = quat::fromeuler_xyz(0.f, 0.f, 0.f);
  192. vec3 NewPosition = pos_offset + vec3(-5.0f, -10.0f, 15.0f);
  193. PhysicsObject* NewPhyobj = new PhysicsObject(m_simulation, NewPosition, NewRotation, 2);
  194. m_character_list.push_back(NewPhyobj);
  195. Ticker::Ref(NewPhyobj);
  196. //NewPhyobj->GetCharacter()->AttachTo(BasePhyobj->GetPhysic(), true, true);
  197. }
  198. #endif //USE_CHARACTER
  199. #if USE_BODIES
  200. {
  201. for (int x=0; x < 6; x++)
  202. {
  203. for (int y=0; y < 2; y++)
  204. {
  205. for (int z=0; z < 5; z++)
  206. {
  207. PhysicsObject* new_physobj = new PhysicsObject(m_simulation, 1000.f,
  208. vec3(-20.f, 15.f, -20.f) +
  209. #if CAT_MODE
  210. vec3(rand(4.f), rand(2.f), rand(4.f)) -
  211. vec3(2.f , 1.f , 2.f) +
  212. #endif //CAT_MODE
  213. vec3(8.f * (float)x, 8.f * (float)y, 8.f * (float)z));
  214. m_physobj_list.push_back(animated_object { new_physobj, ZERO_TIME });
  215. Ticker::Ref(new_physobj);
  216. }
  217. }
  218. }
  219. }
  220. #endif //USE_BODIES
  221. #if USE_ROPE
  222. {
  223. std::vector<PhysicsObject*> RopeElements;
  224. for (int i = 0; i < 14; i++)
  225. {
  226. PhysicsObject* new_physobj = new PhysicsObject(m_simulation, 1000.f,
  227. vec3(0.f, 15.f, -20.f) +
  228. vec3(0.f, 0.f, 2.f * (float)i), 1);
  229. RopeElements.push_back(new_physobj);
  230. m_physobj_list.push_back(animated_object { new_physobj, ZERO_TIME });
  231. Ticker::Ref(new_physobj);
  232. if (RopeElements.size() > 1)
  233. {
  234. EasyConstraint* new_constraint = new EasyConstraint();
  235. vec3 A2B = .5f * (RopeElements[i]->GetPhysic()->GetTransform()[3].xyz -
  236. RopeElements[i - 1]->GetPhysic()->GetTransform()[3].xyz);
  237. new_constraint->SetPhysObjA(RopeElements[i - 1]->GetPhysic(), lol::mat4::translate(A2B));
  238. new_constraint->SetPhysObjB(RopeElements[i]->GetPhysic(), lol::mat4::translate(-A2B));
  239. new_constraint->InitConstraintToPoint2Point();
  240. new_constraint->DisableCollisionBetweenObjs(true);
  241. new_constraint->AddToSimulation(m_simulation);
  242. m_constraint_list.push_back(new_constraint);
  243. }
  244. }
  245. }
  246. #endif //USE_ROPE
  247. }
  248. BtPhysTest::~BtPhysTest()
  249. {
  250. Scene& scene = Scene::GetScene();
  251. scene.PopCamera(m_camera);
  252. Ticker::Unref(m_light1);
  253. Ticker::Unref(m_light2);
  254. #if CAT_MODE
  255. /* cat datas setup */
  256. Shader::Destroy(m_cat_shader);
  257. Tiler::Deregister(m_cat_texture);
  258. #endif //CAT_MODE
  259. while (m_constraint_list.size())
  260. {
  261. EasyConstraint* CurPop = m_constraint_list.back();
  262. m_constraint_list.pop_back();
  263. CurPop->RemoveFromSimulation(m_simulation);
  264. delete CurPop;
  265. }
  266. std::vector<PhysicsObject*> objects;
  267. for (auto *obj : m_ground_list)
  268. objects.push_back(obj);
  269. for (auto *obj : m_stairs_list)
  270. objects.push_back(obj);
  271. for (auto *obj : m_character_list)
  272. objects.push_back(obj);
  273. for (auto *obj : m_platform_list)
  274. objects.push_back(obj);
  275. // Back insertion; is this really necessary?
  276. while (m_physobj_list.size())
  277. {
  278. objects.push_back(m_physobj_list.back().obj);
  279. m_physobj_list.pop_back();
  280. }
  281. m_ground_list.clear();
  282. m_stairs_list.clear();
  283. m_character_list.clear();
  284. m_platform_list.clear();
  285. while (objects.size())
  286. {
  287. PhysicsObject* CurPop = objects.back();
  288. objects.pop_back();
  289. CurPop->GetPhysic()->RemoveFromSimulation(m_simulation);
  290. Ticker::Unref(CurPop);
  291. }
  292. //while (m_ground_list.size())
  293. //{
  294. // PhysicsObject* CurPop = m_ground_list.back();
  295. // m_ground_list.pop_back();
  296. // CurPop->GetPhysic()->RemoveFromSimulation(m_simulation);
  297. // Ticker::Unref(CurPop);
  298. //}
  299. //while (m_stairs_list.size())
  300. //{
  301. // PhysicsObject* CurPop = m_stairs_list.back();
  302. // m_stairs_list.pop_back();
  303. // CurPop->GetPhysic()->RemoveFromSimulation(m_simulation);
  304. // Ticker::Unref(CurPop);
  305. //}
  306. //while (m_character_list.size())
  307. //{
  308. // PhysicsObject* CurPop = m_character_list.back();
  309. // m_character_list.pop_back();
  310. // CurPop->GetCharacter()->RemoveFromSimulation(m_simulation);
  311. // Ticker::Unref(CurPop);
  312. //}
  313. //while (m_platform_list.size())
  314. //{
  315. // PhysicsObject* CurPop = m_platform_list.back();
  316. // m_platform_list.pop_back();
  317. // CurPop->GetPhysic()->RemoveFromSimulation(m_simulation);
  318. // Ticker::Unref(CurPop);
  319. //}
  320. //while (m_physobj_list.size())
  321. //{
  322. // PhysicsObject* CurPop = m_physobj_list.back().obj;
  323. // m_physobj_list.pop_back();
  324. // CurPop->GetPhysic()->RemoveFromSimulation(m_simulation);
  325. // Ticker::Unref(CurPop);
  326. //}
  327. Ticker::Unref(m_simulation);
  328. }
  329. void BtPhysTest::tick_game(float seconds)
  330. {
  331. WorldEntity::tick_game(seconds);
  332. if (!m_init_status)
  333. {
  334. if (Scene::GetCount())
  335. InitApp();
  336. return;
  337. }
  338. else if (m_init_status == 1)
  339. {
  340. m_init_status++;
  341. return;
  342. }
  343. auto context = Debug::DrawContext::New(color::white, 1.f);
  344. Debug::DrawGrid(vec3::zero, vec3::axis_x, vec3::axis_y, vec3::axis_z, 10.f);
  345. if (input::keyboard()->key_released(input::key::SC_Escape))
  346. Ticker::Shutdown();
  347. m_loop_value += seconds;
  348. if (m_loop_value > F_PI * 2.0f)
  349. m_loop_value -= F_PI * 2.0f;
  350. vec3 GroundBarycenter = vec3(.0f);
  351. vec3 PhysObjBarycenter = vec3(.0f);
  352. float factor = .0f;
  353. #if CAT_MODE
  354. #if USE_BODIES
  355. vec3 cam_center(0.f);
  356. float cam_factor = .0f;
  357. vec2 screen_min_max[2] = { vec2(FLT_MAX), vec2(-FLT_MAX) };
  358. Scene& scene = Scene::GetScene();
  359. mat4 world_cam = scene.GetCamera()->GetView();
  360. mat4 cam_screen = scene.GetCamera()->GetProjection();
  361. m_target_timer -= seconds;
  362. if (m_target_timer < .0f)
  363. {
  364. m_target_timer = TARGET_TIMER;
  365. if (m_cam_target == -1)
  366. m_cam_target = rand(m_physobj_list.size());
  367. else
  368. m_cam_target = -1;
  369. }
  370. for (size_t i = 0; i < m_physobj_list.size(); i++)
  371. {
  372. PhysicsObject* PhysObj = m_physobj_list[i].obj;
  373. float &obj_timer = m_physobj_list[i].anim;
  374. vec3 obj_loc = PhysObj->GetPhysic()->GetTransform()[3].xyz;
  375. if (m_cam_target == -1 || m_cam_target == i)
  376. {
  377. cam_center += obj_loc;
  378. cam_factor += 1.f;
  379. mat4 LocalPos = mat4::translate(obj_loc);
  380. vec3 vpos;
  381. LocalPos = world_cam * LocalPos;
  382. mat4 LocalPos0 = LocalPos;
  383. int j = 2;
  384. while (j-- > 0)
  385. {
  386. if (j == 1)
  387. LocalPos = mat4::translate(vec3(-4.f)) * LocalPos0;
  388. else
  389. LocalPos = mat4::translate(vec3(4.f)) * LocalPos0;
  390. LocalPos = cam_screen * LocalPos;
  391. vpos = (LocalPos[3] / LocalPos[3].w).xyz;
  392. screen_min_max[0] = min(vpos.xy, screen_min_max[0]);
  393. screen_min_max[1] = max(vpos.xy, screen_min_max[1]);
  394. }
  395. }
  396. //Jump handling
  397. //if (length(PhysObj->GetPhysic()->GetLinearVelocity()) < ZERO_SPEED)
  398. if (lol::fabs(PhysObj->GetPhysic()->GetLinearVelocity().y) < ZERO_SPEED)
  399. obj_timer -= seconds;
  400. if (obj_timer < .0f)
  401. {
  402. PhysObj->GetPhysic()->AddImpulse(JUMP_HEIGHT *
  403. vec3(JUMP_STRAFE, 1.f, JUMP_STRAFE) *
  404. vec3(rand(-1.f, 1.f), 1.0f, rand(-1.f, 1.f)) *
  405. PhysObj->GetPhysic()->GetMass());
  406. obj_timer = ZERO_TIME;
  407. }
  408. }
  409. float fov_ratio = max(max(lol::fabs(screen_min_max[0].x), lol::fabs(screen_min_max[0].y)),
  410. max(lol::fabs(screen_min_max[1].x), lol::fabs(screen_min_max[1].y)));
  411. vec3 new_target = cam_center / cam_factor;
  412. float fov_dp = .0f;
  413. float loc_dp = .0f;
  414. //ideally fov is on the target
  415. if (lol::fabs(fov_ratio - 1.f) < .2f)
  416. fov_dp = ((m_cam_target == -1)?(.7f):(.2f));
  417. else
  418. fov_dp = ((m_cam_target == -1)?(1.7f):(.9f));
  419. //ideally loc is on the target
  420. if (length(new_target - m_camera->GetTarget()) < 6.f)
  421. loc_dp = ((m_cam_target == -1)?(.5f):(.03f));
  422. else
  423. loc_dp = ((m_cam_target == -1)?(.9f):(.5f));
  424. m_fov_dp = damp(m_fov_dp, fov_dp, 0.08f, seconds);
  425. m_loc_dp = damp(m_loc_dp, loc_dp, 0.08f, seconds);
  426. m_camera->SetFov(damp(m_camera->GetFov(), m_camera->GetFov() * fov_ratio * 1.1f, m_fov_dp, seconds));
  427. vec3 tmp = damp(m_camera->GetTarget(), new_target, m_loc_dp, seconds);
  428. m_camera->SetView((mat4::rotate(radians(10.f) * seconds, vec3(.0f, 1.f, .0f)) * vec4(m_camera->GetPosition(), 1.0f)).xyz,
  429. tmp, vec3(0, 1, 0));
  430. #endif //USE_BODIES
  431. #endif //CAT_MODE
  432. #if USE_WALL
  433. {
  434. for (size_t i = 0; i < m_ground_list.size(); i++)
  435. {
  436. PhysicsObject* PhysObj = m_ground_list[i];
  437. mat4 GroundMat = PhysObj->GetTransform();
  438. GroundBarycenter += GroundMat[3].xyz;
  439. factor += 1.f;
  440. }
  441. GroundBarycenter /= factor;
  442. for (size_t i = 0; i < m_ground_list.size(); i++)
  443. {
  444. PhysicsObject* PhysObj = m_ground_list[i];
  445. mat4 GroundMat = PhysObj->GetTransform();
  446. vec3 CenterToGround = GroundMat[3].xyz - GroundBarycenter;
  447. vec3 CenterToCam = m_camera->GetPosition() - GroundBarycenter;
  448. if (dot(normalize(CenterToCam - CenterToGround),
  449. normalize(CenterToGround)) > 0.f)
  450. PhysObj->SetRender(false);
  451. else
  452. PhysObj->SetRender(true);
  453. }
  454. }
  455. #endif //USE_WALL
  456. #if USE_ROTATION
  457. {
  458. for (size_t i = 0; i < m_ground_list.size(); i++)
  459. {
  460. PhysicsObject* PhysObj = m_ground_list[i];
  461. mat4 GroundMat = PhysObj->GetTransform();
  462. mat4 CenterMx = mat4::translate(GroundBarycenter);
  463. GroundMat = inverse(CenterMx) * GroundMat;
  464. GroundMat = CenterMx *
  465. mat4(quat::fromeuler_xyz(vec3(.0f, radians(20.f), radians(20.0f)) * seconds))
  466. * GroundMat;
  467. PhysObj->SetTransform(GroundMat[3].xyz, quat(mat3(GroundMat)));
  468. }
  469. }
  470. #endif //USE_ROTATION
  471. #if USE_PLATFORM
  472. {
  473. for (size_t i = 0; i < m_platform_list.size(); i++)
  474. {
  475. PhysicsObject* PhysObj = m_platform_list[i];
  476. mat4 GroundMat = PhysObj->GetTransform();
  477. if (i == 0)
  478. {
  479. GroundMat = GroundMat * mat4(quat::fromeuler_xyz(vec3(radians(20.f), .0f, .0f) * seconds));
  480. PhysObj->SetTransform(GroundMat[3].xyz, quat(mat3(GroundMat)));
  481. }
  482. else if (i == 1)
  483. {
  484. GroundMat =
  485. mat4::translate(vec3(-15.0f, 5.0f, lol::cos(m_loop_value) * 8.f)) *
  486. mat4(quat::fromeuler_xyz(vec3(.0f, lol::cos(m_loop_value) * radians(20.f), .0f)));
  487. PhysObj->SetTransform(GroundMat[3].xyz, quat(mat3(GroundMat)));
  488. }
  489. }
  490. }
  491. #endif //USE_PLATFORM
  492. #if USE_CHARACTER
  493. {
  494. auto keyboard = input::keyboard();
  495. for (size_t i = 0; i < m_character_list.size(); i++)
  496. {
  497. PhysicsObject* PhysObj = m_character_list[i];
  498. EasyCharacterController* Character = (EasyCharacterController*)PhysObj->GetCharacter();
  499. mat4 CtlrMx = Character->GetTransform();
  500. vec3 movement(0.f);
  501. movement.z = (keyboard->key(input::key::SC_Right) ? 1.f : 0.f)
  502. - (keyboard->key(input::key::SC_Left) ? 1.f : 0.f);
  503. movement.x = (keyboard->key(input::key::SC_Up) ? 1.f : 0.f)
  504. - (keyboard->key(input::key::SC_Down) ? 1.f : 0.f);
  505. movement.y = (keyboard->key(input::key::SC_PageUp) ? 1.f : 0.f)
  506. - (keyboard->key(input::key::SC_PageDown) ? 1.f : 0.f);
  507. vec3 CharMove = movement * seconds * vec3(4.f, 10.f, 4.f);
  508. if (input::keyboard()->key_released(input::key::SC_Space))
  509. Character->Jump();
  510. Character->SetMovementForFrame(CharMove);
  511. RayCastResult HitResult;
  512. if (m_simulation->RayHits(HitResult, ERT_Closest, Character->GetTransform()[3].xyz, (Character->GetTransform()[3].xyz + vec3(.0f, -1.f, .0f)), Character))
  513. Character->AttachTo(HitResult.m_collider_list[0], true, true);
  514. else
  515. Character->AttachTo(nullptr);
  516. }
  517. }
  518. #endif //USE_CHARACTER
  519. #if USE_CHARACTER
  520. {
  521. PhysObjBarycenter = vec3(.0f);
  522. factor = .0f;
  523. for (size_t i = 0; i < m_character_list.size(); i++)
  524. {
  525. PhysicsObject* PhysObj = m_character_list[i];
  526. mat4 GroundMat = PhysObj->GetTransform();
  527. PhysObjBarycenter += GroundMat[3].xyz;
  528. factor += 1.f;
  529. }
  530. PhysObjBarycenter /= factor;
  531. #if 0
  532. m_camera->SetTarget(m_camera->GetTarget() + (seconds / (seconds + 0.18f)) * (PhysObjBarycenter - m_camera->GetTarget()));
  533. vec3 CamPosCenter = m_camera->GetTarget() + vec3(.0f, 5.0f, .0f);
  534. m_camera->SetPosition(CamPosCenter + normalize(m_camera->GetPosition() - CamPosCenter) * 20.0f);
  535. #endif
  536. }
  537. #else
  538. {
  539. PhysObjBarycenter = vec3(.0f);
  540. for (size_t i = 0; i < m_physobj_list.size(); i++)
  541. {
  542. PhysicsObject* PhysObj = m_physobj_list[i].obj;
  543. mat4 GroundMat = PhysObj->GetTransform();
  544. PhysObjBarycenter += GroundMat[3].xyz;
  545. factor += 1.f;
  546. }
  547. PhysObjBarycenter /= factor;
  548. #if 0
  549. m_camera->SetTarget(PhysObjBarycenter);
  550. m_camera->SetPosition(GroundBarycenter + normalize(GroundBarycenter - PhysObjBarycenter) * 60.0f);
  551. #endif
  552. }
  553. #endif //USE_CHARACTER
  554. }
  555. void BtPhysTest::tick_draw(float seconds, Scene &scene)
  556. {
  557. WorldEntity::tick_draw(seconds, scene);
  558. if (m_init_status != 2)
  559. return;
  560. if (!m_ready)
  561. {
  562. #if CAT_MODE
  563. /* cat datas setup */
  564. m_cat_shader = Shader::Create(LOLFX_RESOURCE_NAME(front_camera_sprite));
  565. #if USE_BODIES
  566. for (size_t i = 0; i < m_physobj_list.size(); i++)
  567. {
  568. PhysicsObject* PhysObj = m_physobj_list[i].obj;
  569. m_cat_sdata = new CatShaderData(((1 << VertexUsage::Position) |
  570. (1 << VertexUsage::Color) |
  571. (1 << VertexUsage::TexCoord) |
  572. (1 << VertexUsage::TexCoordExt)),
  573. m_cat_shader);
  574. m_cat_sdata->m_tex_uniform = m_cat_texture->GetTexture()->GetTextureUniform();
  575. m_cat_sdata->m_sprite_flip = ((rand(2) == 1)?(1.f):(0.f)) / (float)(NB_SPRITE * PARTICLE_SIZE);
  576. PhysObj->SetCustomShaderData(m_cat_sdata);
  577. m_cat_sdata = nullptr;
  578. }
  579. #endif //USE_BODIES
  580. #endif //CAT_MODE
  581. /* FIXME: this object never cleans up */
  582. m_ready = true;
  583. }
  584. else
  585. {
  586. #if CAT_MODE
  587. for (size_t i = 0; i < m_physobj_list.size(); i++)
  588. {
  589. PhysicsObject* PhysObj = m_physobj_list[i].obj;
  590. CatShaderData* ShaderData = (CatShaderData*)PhysObj->GetCustomShaderData();
  591. ShaderData->m_sprite_orientation = damp(ShaderData->m_sprite_orientation,
  592. F_PI_4 * ((ShaderData->m_sprite_flip * 2.f * (float)(NB_SPRITE * PARTICLE_SIZE)) - 1.f) *
  593. clamp(PhysObj->GetPhysic()->GetLinearVelocity().y / 20.0f, -1.f, 1.f),
  594. 0.1f, seconds);
  595. }
  596. #endif //CAT_MODE
  597. }
  598. //Video::set_clear_color(vec4(0.0f, 0.0f, 0.12f, 1.0f));
  599. }
  600. //-----------------------------------------------------------------------------
  601. // CShaderData
  602. //-----------------------------------------------------------------------------
  603. CatShaderData::CatShaderData(uint32_t vert_decl_flags, std::shared_ptr<Shader> shader)
  604. : GpuShaderData(vert_decl_flags, shader, DebugRenderMode::Default)
  605. {
  606. m_sprite_orientation = .0f;
  607. m_sprite_flip = .0f;
  608. SetupDefaultData();
  609. }
  610. //-----------------------------------------------------------------------------
  611. void CatShaderData::SetupDefaultData()
  612. {
  613. AddUniform("u_model_view");
  614. AddUniform("u_normal_mat");
  615. AddUniform("u_proj");
  616. AddUniform("u_texture");
  617. AddUniform("u_sprite_orientation");
  618. AddUniform("u_sprite_flip");
  619. }
  620. //-----------------------------------------------------------------------------
  621. void CatShaderData::SetupShaderDatas(mat4 const &model)
  622. {
  623. Scene& scene = Scene::GetScene();
  624. mat4 proj = scene.GetCamera()->GetProjection();
  625. mat4 view = scene.GetCamera()->GetView();
  626. mat4 modelview = view * model;
  627. mat3 normalmat = transpose(inverse(mat3(view)));
  628. m_shader->SetUniform(*GetUniform("u_model_view"), modelview);
  629. m_shader->SetUniform(*GetUniform("u_normal_mat"), normalmat);
  630. m_shader->SetUniform(*GetUniform("u_proj"), proj);
  631. m_shader->SetUniform(*GetUniform("u_texture"), m_tex_uniform, 0);
  632. m_shader->SetUniform(*GetUniform("u_sprite_orientation"), m_sprite_orientation);
  633. m_shader->SetUniform(*GetUniform("u_sprite_flip"), m_sprite_flip);
  634. }
  635. int main(int argc, char **argv)
  636. {
  637. sys::init(argc, argv);
  638. Application app("BtPhysTest", ivec2(1280, 960), 60.0f);
  639. new BtPhysTest(argc > 1);
  640. app.ShowPointer(false);
  641. app.Run();
  642. return EXIT_SUCCESS;
  643. }