1404 satır
35 KiB

  1. //
  2. // Lol Engine
  3. //
  4. // Copyright: (c) 2010-2012 Sam Hocevar <sam@hocevar.net>
  5. // This program is free software; you can redistribute it and/or
  6. // modify it under the terms of the Do What The Fuck You Want To
  7. // Public License, Version 2, as published by Sam Hocevar. See
  8. // http://sam.zoy.org/projects/COPYING.WTFPL for more details.
  9. //
  10. #if defined HAVE_CONFIG_H
  11. # include "config.h"
  12. #endif
  13. #if defined _XBOX
  14. # define _USE_MATH_DEFINES /* for M_PI */
  15. # include <xtl.h>
  16. # undef near /* Fuck Microsoft */
  17. # undef far /* Fuck Microsoft again */
  18. #elif defined WIN32
  19. # define _USE_MATH_DEFINES /* for M_PI */
  20. # define WIN32_LEAN_AND_MEAN
  21. # include <windows.h>
  22. # undef near /* Fuck Microsoft */
  23. # undef far /* Fuck Microsoft again */
  24. #endif
  25. #include <new>
  26. #include <cstring>
  27. #include <cstdio>
  28. #include <cstdlib>
  29. #include "core.h"
  30. using namespace std;
  31. namespace lol
  32. {
  33. template<> real::Real()
  34. {
  35. m_mantissa = new uint32_t[BIGITS];
  36. m_signexp = 0;
  37. }
  38. template<> real::Real(real const &x)
  39. {
  40. m_mantissa = new uint32_t[BIGITS];
  41. memcpy(m_mantissa, x.m_mantissa, BIGITS * sizeof(uint32_t));
  42. m_signexp = x.m_signexp;
  43. }
  44. template<> real const &real::operator =(real const &x)
  45. {
  46. if (&x != this)
  47. {
  48. memcpy(m_mantissa, x.m_mantissa, BIGITS * sizeof(uint32_t));
  49. m_signexp = x.m_signexp;
  50. }
  51. return *this;
  52. }
  53. template<> real::~Real()
  54. {
  55. delete[] m_mantissa;
  56. }
  57. template<> real::Real(float f) { new(this) real((double)f); }
  58. template<> real::Real(int i) { new(this) real((double)i); }
  59. template<> real::Real(unsigned int i) { new(this) real((double)i); }
  60. template<> real::Real(double d)
  61. {
  62. new(this) real();
  63. union { double d; uint64_t x; } u = { d };
  64. uint32_t sign = (u.x >> 63) << 31;
  65. uint32_t exponent = (u.x << 1) >> 53;
  66. switch (exponent)
  67. {
  68. case 0x00:
  69. m_signexp = sign;
  70. break;
  71. case 0x7ff:
  72. m_signexp = sign | 0x7fffffffu;
  73. break;
  74. default:
  75. m_signexp = sign | (exponent + (1 << 30) - (1 << 10));
  76. break;
  77. }
  78. m_mantissa[0] = (uint32_t)(u.x >> 20);
  79. m_mantissa[1] = (uint32_t)(u.x << 12);
  80. memset(m_mantissa + 2, 0, (BIGITS - 2) * sizeof(m_mantissa[0]));
  81. }
  82. template<> real::operator float() const { return (float)(double)(*this); }
  83. template<> real::operator int() const { return (int)(double)(*this); }
  84. template<> real::operator unsigned() const { return (unsigned)(double)(*this); }
  85. template<> real::operator double() const
  86. {
  87. union { double d; uint64_t x; } u;
  88. /* Get sign */
  89. u.x = m_signexp >> 31;
  90. u.x <<= 11;
  91. /* Compute new exponent */
  92. uint32_t exponent = (m_signexp << 1) >> 1;
  93. int e = (int)exponent - (1 << 30) + (1 << 10);
  94. if (e < 0)
  95. u.x <<= 52;
  96. else if (e >= 0x7ff)
  97. {
  98. u.x |= 0x7ff;
  99. u.x <<= 52;
  100. }
  101. else
  102. {
  103. u.x |= e;
  104. /* Store mantissa if necessary */
  105. u.x <<= 32;
  106. u.x |= m_mantissa[0];
  107. u.x <<= 20;
  108. u.x |= m_mantissa[1] >> 12;
  109. /* Rounding */
  110. u.x += (m_mantissa[1] >> 11) & 1;
  111. }
  112. return u.d;
  113. }
  114. /*
  115. * Create a real number from an ASCII representation
  116. */
  117. template<> real::Real(char const *str)
  118. {
  119. real ret = 0;
  120. int exponent = 0;
  121. bool comma = false, nonzero = false, negative = false, finished = false;
  122. for (char const *p = str; *p && !finished; p++)
  123. {
  124. switch (*p)
  125. {
  126. case '-':
  127. case '+':
  128. if (p != str)
  129. break;
  130. negative = (*p == '-');
  131. break;
  132. case '.':
  133. if (comma)
  134. finished = true;
  135. comma = true;
  136. break;
  137. case '0': case '1': case '2': case '3': case '4':
  138. case '5': case '6': case '7': case '8': case '9':
  139. if (nonzero)
  140. {
  141. real x = ret + ret;
  142. x = x + x + ret;
  143. ret = x + x;
  144. }
  145. if (*p != '0')
  146. {
  147. ret += (int)(*p - '0');
  148. nonzero = true;
  149. }
  150. if (comma)
  151. exponent--;
  152. break;
  153. case 'e':
  154. case 'E':
  155. exponent += atoi(p + 1);
  156. finished = true;
  157. break;
  158. default:
  159. finished = true;
  160. break;
  161. }
  162. }
  163. if (exponent)
  164. ret *= pow(R_10, (real)exponent);
  165. if (negative)
  166. ret = -ret;
  167. new(this) real(ret);
  168. }
  169. template<> real real::operator +() const
  170. {
  171. return *this;
  172. }
  173. template<> real real::operator -() const
  174. {
  175. real ret = *this;
  176. ret.m_signexp ^= 0x80000000u;
  177. return ret;
  178. }
  179. template<> real real::operator +(real const &x) const
  180. {
  181. if (x.m_signexp << 1 == 0)
  182. return *this;
  183. /* Ensure both arguments are positive. Otherwise, switch signs,
  184. * or replace + with -. */
  185. if (m_signexp >> 31)
  186. return -(-*this + -x);
  187. if (x.m_signexp >> 31)
  188. return *this - (-x);
  189. /* Ensure *this has the larger exponent (no need for the mantissa to
  190. * be larger, as in subtraction). Otherwise, switch. */
  191. if ((m_signexp << 1) < (x.m_signexp << 1))
  192. return x + *this;
  193. real ret;
  194. int e1 = m_signexp - (1 << 30) + 1;
  195. int e2 = x.m_signexp - (1 << 30) + 1;
  196. int bigoff = (e1 - e2) / BIGIT_BITS;
  197. int off = e1 - e2 - bigoff * BIGIT_BITS;
  198. if (bigoff > BIGITS)
  199. return *this;
  200. ret.m_signexp = m_signexp;
  201. uint64_t carry = 0;
  202. for (int i = BIGITS; i--; )
  203. {
  204. carry += m_mantissa[i];
  205. if (i - bigoff >= 0)
  206. carry += x.m_mantissa[i - bigoff] >> off;
  207. if (off && i - bigoff > 0)
  208. carry += (x.m_mantissa[i - bigoff - 1] << (BIGIT_BITS - off)) & 0xffffffffu;
  209. else if (i - bigoff == 0)
  210. carry += (uint64_t)1 << (BIGIT_BITS - off);
  211. ret.m_mantissa[i] = (uint32_t)carry;
  212. carry >>= BIGIT_BITS;
  213. }
  214. /* Renormalise in case we overflowed the mantissa */
  215. if (carry)
  216. {
  217. carry--;
  218. for (int i = 0; i < BIGITS; i++)
  219. {
  220. uint32_t tmp = ret.m_mantissa[i];
  221. ret.m_mantissa[i] = ((uint32_t)carry << (BIGIT_BITS - 1))
  222. | (tmp >> 1);
  223. carry = tmp & 1u;
  224. }
  225. ret.m_signexp++;
  226. }
  227. return ret;
  228. }
  229. template<> real real::operator -(real const &x) const
  230. {
  231. if (x.m_signexp << 1 == 0)
  232. return *this;
  233. /* Ensure both arguments are positive. Otherwise, switch signs,
  234. * or replace - with +. */
  235. if (m_signexp >> 31)
  236. return -(-*this + x);
  237. if (x.m_signexp >> 31)
  238. return (*this) + (-x);
  239. /* Ensure *this is larger than x */
  240. if (*this < x)
  241. return -(x - *this);
  242. real ret;
  243. int e1 = m_signexp - (1 << 30) + 1;
  244. int e2 = x.m_signexp - (1 << 30) + 1;
  245. int bigoff = (e1 - e2) / BIGIT_BITS;
  246. int off = e1 - e2 - bigoff * BIGIT_BITS;
  247. if (bigoff > BIGITS)
  248. return *this;
  249. ret.m_signexp = m_signexp;
  250. /* int64_t instead of uint64_t to preserve sign through shifts */
  251. int64_t carry = 0;
  252. for (int i = 0; i < bigoff; i++)
  253. {
  254. carry -= x.m_mantissa[BIGITS - 1 - i];
  255. /* Emulates a signed shift */
  256. carry >>= BIGIT_BITS;
  257. carry |= carry << BIGIT_BITS;
  258. }
  259. if (bigoff < BIGITS)
  260. carry -= x.m_mantissa[BIGITS - 1 - bigoff] & (((int64_t)1 << off) - 1);
  261. carry /= (int64_t)1 << off;
  262. for (int i = BIGITS; i--; )
  263. {
  264. carry += m_mantissa[i];
  265. if (i - bigoff >= 0)
  266. carry -= x.m_mantissa[i - bigoff] >> off;
  267. if (off && i - bigoff > 0)
  268. carry -= (x.m_mantissa[i - bigoff - 1] << (BIGIT_BITS - off)) & 0xffffffffu;
  269. else if (i - bigoff == 0)
  270. carry -= (uint64_t)1 << (BIGIT_BITS - off);
  271. ret.m_mantissa[i] = (uint32_t)carry;
  272. carry >>= BIGIT_BITS;
  273. carry |= carry << BIGIT_BITS;
  274. }
  275. carry += 1;
  276. /* Renormalise if we underflowed the mantissa */
  277. if (carry == 0)
  278. {
  279. /* How much do we need to shift the mantissa? FIXME: this could
  280. * be computed above */
  281. off = 0;
  282. for (int i = 0; i < BIGITS; i++)
  283. {
  284. if (!ret.m_mantissa[i])
  285. {
  286. off += BIGIT_BITS;
  287. continue;
  288. }
  289. for (uint32_t tmp = ret.m_mantissa[i]; tmp < 0x80000000u; tmp <<= 1)
  290. off++;
  291. break;
  292. }
  293. if (off == BIGITS * BIGIT_BITS)
  294. ret.m_signexp &= 0x80000000u;
  295. else
  296. {
  297. off++; /* Shift one more to get rid of the leading one */
  298. ret.m_signexp -= off;
  299. bigoff = off / BIGIT_BITS;
  300. off -= bigoff * BIGIT_BITS;
  301. for (int i = 0; i < BIGITS; i++)
  302. {
  303. uint32_t tmp = 0;
  304. if (i + bigoff < BIGITS)
  305. tmp |= ret.m_mantissa[i + bigoff] << off;
  306. if (off && i + bigoff + 1 < BIGITS)
  307. tmp |= ret.m_mantissa[i + bigoff + 1] >> (BIGIT_BITS - off);
  308. ret.m_mantissa[i] = tmp;
  309. }
  310. }
  311. }
  312. return ret;
  313. }
  314. template<> real real::operator *(real const &x) const
  315. {
  316. real ret;
  317. if (m_signexp << 1 == 0 || x.m_signexp << 1 == 0)
  318. {
  319. ret = (m_signexp << 1 == 0) ? *this : x;
  320. ret.m_signexp ^= x.m_signexp & 0x80000000u;
  321. return ret;
  322. }
  323. ret.m_signexp = (m_signexp ^ x.m_signexp) & 0x80000000u;
  324. int e = (m_signexp & 0x7fffffffu) - (1 << 30) + 1
  325. + (x.m_signexp & 0x7fffffffu) - (1 << 30) + 1;
  326. /* Accumulate low order product; no need to store it, we just
  327. * want the carry value */
  328. uint64_t carry = 0, hicarry = 0, prev;
  329. for (int i = 0; i < BIGITS; i++)
  330. {
  331. for (int j = 0; j < i + 1; j++)
  332. {
  333. prev = carry;
  334. carry += (uint64_t)m_mantissa[BIGITS - 1 - j]
  335. * (uint64_t)x.m_mantissa[BIGITS - 1 + j - i];
  336. if (carry < prev)
  337. hicarry++;
  338. }
  339. carry >>= BIGIT_BITS;
  340. carry |= hicarry << BIGIT_BITS;
  341. hicarry >>= BIGIT_BITS;
  342. }
  343. for (int i = 0; i < BIGITS; i++)
  344. {
  345. for (int j = i + 1; j < BIGITS; j++)
  346. {
  347. prev = carry;
  348. carry += (uint64_t)m_mantissa[BIGITS - 1 - j]
  349. * (uint64_t)x.m_mantissa[j - 1 - i];
  350. if (carry < prev)
  351. hicarry++;
  352. }
  353. prev = carry;
  354. carry += m_mantissa[BIGITS - 1 - i];
  355. carry += x.m_mantissa[BIGITS - 1 - i];
  356. if (carry < prev)
  357. hicarry++;
  358. ret.m_mantissa[BIGITS - 1 - i] = carry & 0xffffffffu;
  359. carry >>= BIGIT_BITS;
  360. carry |= hicarry << BIGIT_BITS;
  361. hicarry >>= BIGIT_BITS;
  362. }
  363. /* Renormalise in case we overflowed the mantissa */
  364. if (carry)
  365. {
  366. carry--;
  367. for (int i = 0; i < BIGITS; i++)
  368. {
  369. uint32_t tmp = (uint32_t)ret.m_mantissa[i];
  370. ret.m_mantissa[i] = ((uint32_t)carry << (BIGIT_BITS - 1))
  371. | (tmp >> 1);
  372. carry = tmp & 1u;
  373. }
  374. e++;
  375. }
  376. ret.m_signexp |= e + (1 << 30) - 1;
  377. return ret;
  378. }
  379. template<> real real::operator /(real const &x) const
  380. {
  381. return *this * re(x);
  382. }
  383. template<> real const &real::operator +=(real const &x)
  384. {
  385. real tmp = *this;
  386. return *this = tmp + x;
  387. }
  388. template<> real const &real::operator -=(real const &x)
  389. {
  390. real tmp = *this;
  391. return *this = tmp - x;
  392. }
  393. template<> real const &real::operator *=(real const &x)
  394. {
  395. real tmp = *this;
  396. return *this = tmp * x;
  397. }
  398. template<> real const &real::operator /=(real const &x)
  399. {
  400. real tmp = *this;
  401. return *this = tmp / x;
  402. }
  403. template<> bool real::operator ==(real const &x) const
  404. {
  405. if ((m_signexp << 1) == 0 && (x.m_signexp << 1) == 0)
  406. return true;
  407. if (m_signexp != x.m_signexp)
  408. return false;
  409. return memcmp(m_mantissa, x.m_mantissa, BIGITS * sizeof(uint32_t)) == 0;
  410. }
  411. template<> bool real::operator !=(real const &x) const
  412. {
  413. return !(*this == x);
  414. }
  415. template<> bool real::operator <(real const &x) const
  416. {
  417. /* Ensure both numbers are positive */
  418. if (m_signexp >> 31)
  419. return (x.m_signexp >> 31) ? -*this > -x : true;
  420. if (x.m_signexp >> 31)
  421. return false;
  422. /* Compare all relevant bits */
  423. if (m_signexp != x.m_signexp)
  424. return m_signexp < x.m_signexp;
  425. for (int i = 0; i < BIGITS; i++)
  426. if (m_mantissa[i] != x.m_mantissa[i])
  427. return m_mantissa[i] < x.m_mantissa[i];
  428. return false;
  429. }
  430. template<> bool real::operator <=(real const &x) const
  431. {
  432. return !(*this > x);
  433. }
  434. template<> bool real::operator >(real const &x) const
  435. {
  436. /* Ensure both numbers are positive */
  437. if (m_signexp >> 31)
  438. return (x.m_signexp >> 31) ? -*this < -x : false;
  439. if (x.m_signexp >> 31)
  440. return true;
  441. /* Compare all relevant bits */
  442. if (m_signexp != x.m_signexp)
  443. return m_signexp > x.m_signexp;
  444. for (int i = 0; i < BIGITS; i++)
  445. if (m_mantissa[i] != x.m_mantissa[i])
  446. return m_mantissa[i] > x.m_mantissa[i];
  447. return false;
  448. }
  449. template<> bool real::operator >=(real const &x) const
  450. {
  451. return !(*this < x);
  452. }
  453. template<> bool real::operator !() const
  454. {
  455. return !(bool)*this;
  456. }
  457. template<> real::operator bool() const
  458. {
  459. /* A real is "true" if it is non-zero (exponent is non-zero) AND
  460. * not NaN (exponent is not full bits OR higher order mantissa is zero) */
  461. uint32_t exponent = m_signexp << 1;
  462. return exponent && (~exponent || m_mantissa[0] == 0);
  463. }
  464. template<> real min(real const &a, real const &b)
  465. {
  466. return (a < b) ? a : b;
  467. }
  468. template<> real max(real const &a, real const &b)
  469. {
  470. return (a > b) ? a : b;
  471. }
  472. template<> real clamp(real const &x, real const &a, real const &b)
  473. {
  474. return (x < a) ? a : (x > b) ? b : x;
  475. }
  476. template<> real re(real const &x)
  477. {
  478. if (!(x.m_signexp << 1))
  479. {
  480. real ret = x;
  481. ret.m_signexp = x.m_signexp | 0x7fffffffu;
  482. ret.m_mantissa[0] = 0;
  483. return ret;
  484. }
  485. /* Use the system's float inversion to approximate 1/x */
  486. union { float f; uint32_t x; } u = { 1.0f }, v = { 1.0f };
  487. v.x |= x.m_mantissa[0] >> 9;
  488. v.f = 1.0f / v.f;
  489. real ret;
  490. ret.m_mantissa[0] = v.x << 9;
  491. uint32_t sign = x.m_signexp & 0x80000000u;
  492. ret.m_signexp = sign;
  493. int exponent = (x.m_signexp & 0x7fffffffu) + 1;
  494. exponent = -exponent + (v.x >> 23) - (u.x >> 23);
  495. ret.m_signexp |= (exponent - 1) & 0x7fffffffu;
  496. /* FIXME: 1+log2(BIGITS) steps of Newton-Raphson seems to be enough for
  497. * convergence, but this hasn't been checked seriously. */
  498. for (int i = 1; i <= real::BIGITS; i *= 2)
  499. ret = ret * (real::R_2 - ret * x);
  500. return ret;
  501. }
  502. template<> real sqrt(real const &x)
  503. {
  504. /* if zero, return x */
  505. if (!(x.m_signexp << 1))
  506. return x;
  507. /* if negative, return NaN */
  508. if (x.m_signexp >> 31)
  509. {
  510. real ret;
  511. ret.m_signexp = 0x7fffffffu;
  512. ret.m_mantissa[0] = 0xffffu;
  513. return ret;
  514. }
  515. /* Use the system's float inversion to approximate 1/sqrt(x). First
  516. * we construct a float in the [1..4[ range that has roughly the same
  517. * mantissa as our real. Its exponent is 0 or 1, depending on the
  518. * partity of x. The final exponent is 0, -1 or -2. We use the final
  519. * exponent and final mantissa to pre-fill the result. */
  520. union { float f; uint32_t x; } u = { 1.0f }, v = { 2.0f };
  521. v.x -= ((x.m_signexp & 1) << 23);
  522. v.x |= x.m_mantissa[0] >> 9;
  523. v.f = 1.0f / sqrtf(v.f);
  524. real ret;
  525. ret.m_mantissa[0] = v.x << 9;
  526. uint32_t sign = x.m_signexp & 0x80000000u;
  527. ret.m_signexp = sign;
  528. uint32_t exponent = (x.m_signexp & 0x7fffffffu);
  529. exponent = ((1 << 30) + (1 << 29) - 1) - (exponent + 1) / 2;
  530. exponent = exponent + (v.x >> 23) - (u.x >> 23);
  531. ret.m_signexp |= exponent & 0x7fffffffu;
  532. /* FIXME: 1+log2(BIGITS) steps of Newton-Raphson seems to be enough for
  533. * convergence, but this hasn't been checked seriously. */
  534. for (int i = 1; i <= real::BIGITS; i *= 2)
  535. {
  536. ret = ret * (real::R_3 - ret * ret * x);
  537. ret.m_signexp--;
  538. }
  539. return ret * x;
  540. }
  541. template<> real cbrt(real const &x)
  542. {
  543. /* if zero, return x */
  544. if (!(x.m_signexp << 1))
  545. return x;
  546. /* Use the system's float inversion to approximate cbrt(x). First
  547. * we construct a float in the [1..8[ range that has roughly the same
  548. * mantissa as our real. Its exponent is 0, 1 or 2, depending on the
  549. * value of x. The final exponent is 0 or 1 (special case). We use
  550. * the final exponent and final mantissa to pre-fill the result. */
  551. union { float f; uint32_t x; } u = { 1.0f }, v = { 1.0f };
  552. v.x += ((x.m_signexp % 3) << 23);
  553. v.x |= x.m_mantissa[0] >> 9;
  554. v.f = powf(v.f, 0.33333333333333333f);
  555. real ret;
  556. ret.m_mantissa[0] = v.x << 9;
  557. uint32_t sign = x.m_signexp & 0x80000000u;
  558. ret.m_signexp = sign;
  559. int exponent = (x.m_signexp & 0x7fffffffu) - (1 << 30) + 1;
  560. exponent = exponent / 3 + (v.x >> 23) - (u.x >> 23);
  561. ret.m_signexp |= (exponent + (1 << 30) - 1) & 0x7fffffffu;
  562. /* FIXME: 1+log2(BIGITS) steps of Newton-Raphson seems to be enough for
  563. * convergence, but this hasn't been checked seriously. */
  564. for (int i = 1; i <= real::BIGITS; i *= 2)
  565. {
  566. static real third = re(real::R_3);
  567. ret = third * (x / (ret * ret) + (ret / 2));
  568. }
  569. return ret;
  570. }
  571. template<> real pow(real const &x, real const &y)
  572. {
  573. if (!y)
  574. return real::R_1;
  575. if (!x)
  576. return real::R_0;
  577. if (x > real::R_0)
  578. return exp(y * log(x));
  579. else /* x < 0 */
  580. {
  581. /* Odd integer exponent */
  582. if (y == (round(y / 2) * 2))
  583. return exp(y * log(-x));
  584. /* Even integer exponent */
  585. if (y == round(y))
  586. return -exp(y * log(-x));
  587. /* FIXME: negative nth root */
  588. return real::R_0;
  589. }
  590. }
  591. static real fast_fact(int x)
  592. {
  593. real ret = real::R_1;
  594. int i = 1, multiplier = 1, exponent = 0;
  595. for (;;)
  596. {
  597. if (i++ >= x)
  598. /* Multiplication is a no-op if multiplier == 1 */
  599. return ldexp(ret * multiplier, exponent);
  600. int tmp = i;
  601. while ((tmp & 1) == 0)
  602. {
  603. tmp >>= 1;
  604. exponent++;
  605. }
  606. if (multiplier * tmp / tmp != multiplier)
  607. {
  608. ret *= multiplier;
  609. multiplier = 1;
  610. }
  611. multiplier *= tmp;
  612. }
  613. }
  614. template<> real gamma(real const &x)
  615. {
  616. /* We use Spouge's formula. FIXME: precision is far from acceptable,
  617. * especially with large values. We need to compute this with higher
  618. * precision values in order to attain the desired accuracy. It might
  619. * also be useful to sort the ck values by decreasing absolute value
  620. * and do the addition in this order. */
  621. int a = ceilf(logf(2) / logf(2 * M_PI) * real::BIGITS * real::BIGIT_BITS);
  622. real ret = sqrt(real::R_PI * 2);
  623. real fact_k_1 = real::R_1;
  624. for (int k = 1; k < a; k++)
  625. {
  626. real a_k = (real)(a - k);
  627. real ck = pow(a_k, (real)((float)k - 0.5)) * exp(a_k)
  628. / (fact_k_1 * (x + (real)(k - 1)));
  629. ret += ck;
  630. fact_k_1 *= (real)-k;
  631. }
  632. ret *= pow(x + (real)(a - 1), x - (real::R_1 / 2));
  633. ret *= exp(-x - (real)(a - 1));
  634. return ret;
  635. }
  636. template<> real fabs(real const &x)
  637. {
  638. real ret = x;
  639. ret.m_signexp &= 0x7fffffffu;
  640. return ret;
  641. }
  642. static real fast_log(real const &x)
  643. {
  644. /* This fast log method is tuned to work on the [1..2] range and
  645. * no effort whatsoever was made to improve convergence outside this
  646. * domain of validity. It can converge pretty fast, provided we use
  647. * the following variable substitutions:
  648. * y = sqrt(x)
  649. * z = (y - 1) / (y + 1)
  650. *
  651. * And the following identities:
  652. * ln(x) = 2 ln(y)
  653. * = 2 ln((1 + z) / (1 - z))
  654. * = 4 z (1 + z^2 / 3 + z^4 / 5 + z^6 / 7...)
  655. *
  656. * Any additional sqrt() call would halve the convergence time, but
  657. * would also impact the final precision. For now we stick with one
  658. * sqrt() call. */
  659. real y = sqrt(x);
  660. real z = (y - real::R_1) / (y + real::R_1), z2 = z * z, zn = z2;
  661. real sum = real::R_1;
  662. for (int i = 3; ; i += 2)
  663. {
  664. real newsum = sum + zn / (real)i;
  665. if (newsum == sum)
  666. break;
  667. sum = newsum;
  668. zn *= z2;
  669. }
  670. return z * sum * 4;
  671. }
  672. template<> real log(real const &x)
  673. {
  674. /* Strategy for log(x): if x = 2^E*M then log(x) = E log(2) + log(M),
  675. * with the property that M is in [1..2[, so fast_log() applies here. */
  676. real tmp = x;
  677. if (x.m_signexp >> 31 || x.m_signexp == 0)
  678. {
  679. tmp.m_signexp = 0xffffffffu;
  680. tmp.m_mantissa[0] = 0xffffffffu;
  681. return tmp;
  682. }
  683. tmp.m_signexp = (1 << 30) - 1;
  684. return (real)(int)(x.m_signexp - (1 << 30) + 1) * real::R_LN2
  685. + fast_log(tmp);
  686. }
  687. template<> real log2(real const &x)
  688. {
  689. /* Strategy for log2(x): see log(x). */
  690. real tmp = x;
  691. if (x.m_signexp >> 31 || x.m_signexp == 0)
  692. {
  693. tmp.m_signexp = 0xffffffffu;
  694. tmp.m_mantissa[0] = 0xffffffffu;
  695. return tmp;
  696. }
  697. tmp.m_signexp = (1 << 30) - 1;
  698. return (real)(int)(x.m_signexp - (1 << 30) + 1)
  699. + fast_log(tmp) * real::R_LOG2E;
  700. }
  701. template<> real log10(real const &x)
  702. {
  703. return log(x) * real::R_LOG10E;
  704. }
  705. static real fast_exp_sub(real const &x, real const &y)
  706. {
  707. /* This fast exp method is tuned to work on the [-1..1] range and
  708. * no effort whatsoever was made to improve convergence outside this
  709. * domain of validity. The argument y is used for cases where we
  710. * don't want the leading 1 in the Taylor series. */
  711. real ret = real::R_1 - y, xn = x;
  712. int i = 1;
  713. for (;;)
  714. {
  715. real newret = ret + xn;
  716. if (newret == ret)
  717. break;
  718. ret = newret * ++i;
  719. xn *= x;
  720. }
  721. return ret / fast_fact(i);
  722. }
  723. template<> real exp(real const &x)
  724. {
  725. /* Strategy for exp(x): the Taylor series does not converge very fast
  726. * with large positive or negative values.
  727. *
  728. * However, we know that the result is going to be in the form M*2^E,
  729. * where M is the mantissa and E the exponent. We first try to predict
  730. * a value for E, which is approximately log2(exp(x)) = x / log(2).
  731. *
  732. * Let E0 be an integer close to x / log(2). We need to find a value x0
  733. * such that exp(x) = 2^E0 * exp(x0). We get x0 = x - E0 log(2).
  734. *
  735. * Thus the final algorithm:
  736. * int E0 = x / log(2)
  737. * real x0 = x - E0 log(2)
  738. * real x1 = exp(x0)
  739. * return x1 * 2^E0
  740. */
  741. int e0 = x / real::R_LN2;
  742. real x0 = x - (real)e0 * real::R_LN2;
  743. real x1 = fast_exp_sub(x0, real::R_0);
  744. x1.m_signexp += e0;
  745. return x1;
  746. }
  747. template<> real exp2(real const &x)
  748. {
  749. /* Strategy for exp2(x): see strategy in exp(). */
  750. int e0 = x;
  751. real x0 = x - (real)e0;
  752. real x1 = fast_exp_sub(x0 * real::R_LN2, real::R_0);
  753. x1.m_signexp += e0;
  754. return x1;
  755. }
  756. template<> real sinh(real const &x)
  757. {
  758. /* We cannot always use (exp(x)-exp(-x))/2 because we'll lose
  759. * accuracy near zero. We only use this identity for |x|>0.5. If
  760. * |x|<=0.5, we compute exp(x)-1 and exp(-x)-1 instead. */
  761. bool near_zero = (fabs(x) < real::R_1 / 2);
  762. real x1 = near_zero ? fast_exp_sub(x, real::R_1) : exp(x);
  763. real x2 = near_zero ? fast_exp_sub(-x, real::R_1) : exp(-x);
  764. return (x1 - x2) / 2;
  765. }
  766. template<> real tanh(real const &x)
  767. {
  768. /* See sinh() for the strategy here */
  769. bool near_zero = (fabs(x) < real::R_1 / 2);
  770. real x1 = near_zero ? fast_exp_sub(x, real::R_1) : exp(x);
  771. real x2 = near_zero ? fast_exp_sub(-x, real::R_1) : exp(-x);
  772. real x3 = near_zero ? x1 + x2 + real::R_2 : x1 + x2;
  773. return (x1 - x2) / x3;
  774. }
  775. template<> real cosh(real const &x)
  776. {
  777. /* No need to worry about accuracy here; maybe the last bit is slightly
  778. * off, but that's about it. */
  779. return (exp(x) + exp(-x)) / 2;
  780. }
  781. template<> real frexp(real const &x, int *exp)
  782. {
  783. if (!x)
  784. {
  785. *exp = 0;
  786. return x;
  787. }
  788. real ret = x;
  789. int exponent = (ret.m_signexp & 0x7fffffffu) - (1 << 30) + 1;
  790. *exp = exponent + 1;
  791. ret.m_signexp -= exponent + 1;
  792. return ret;
  793. }
  794. template<> real ldexp(real const &x, int exp)
  795. {
  796. real ret = x;
  797. if (ret)
  798. ret.m_signexp += exp;
  799. return ret;
  800. }
  801. template<> real modf(real const &x, real *iptr)
  802. {
  803. real absx = fabs(x);
  804. real tmp = floor(absx);
  805. *iptr = copysign(tmp, x);
  806. return copysign(absx - tmp, x);
  807. }
  808. template<> real ulp(real const &x)
  809. {
  810. real ret = real::R_1;
  811. if (x)
  812. ret.m_signexp = x.m_signexp + 1 - real::BIGITS * real::BIGIT_BITS;
  813. else
  814. ret.m_signexp = 0;
  815. return ret;
  816. }
  817. template<> real nextafter(real const &x, real const &y)
  818. {
  819. if (x == y)
  820. return x;
  821. else if (x < y)
  822. return x + ulp(x);
  823. else
  824. return x - ulp(x);
  825. }
  826. template<> real copysign(real const &x, real const &y)
  827. {
  828. real ret = x;
  829. ret.m_signexp &= 0x7fffffffu;
  830. ret.m_signexp |= y.m_signexp & 0x80000000u;
  831. return ret;
  832. }
  833. template<> real floor(real const &x)
  834. {
  835. /* Strategy for floor(x):
  836. * - if negative, return -ceil(-x)
  837. * - if zero or negative zero, return x
  838. * - if less than one, return zero
  839. * - otherwise, if e is the exponent, clear all bits except the
  840. * first e. */
  841. if (x < -real::R_0)
  842. return -ceil(-x);
  843. if (!x)
  844. return x;
  845. if (x < real::R_1)
  846. return real::R_0;
  847. real ret = x;
  848. int exponent = x.m_signexp - (1 << 30) + 1;
  849. for (int i = 0; i < real::BIGITS; i++)
  850. {
  851. if (exponent <= 0)
  852. ret.m_mantissa[i] = 0;
  853. else if (exponent < real::BIGIT_BITS)
  854. ret.m_mantissa[i] &= ~((1 << (real::BIGIT_BITS - exponent)) - 1);
  855. exponent -= real::BIGIT_BITS;
  856. }
  857. return ret;
  858. }
  859. template<> real ceil(real const &x)
  860. {
  861. /* Strategy for ceil(x):
  862. * - if negative, return -floor(-x)
  863. * - if x == floor(x), return x
  864. * - otherwise, return floor(x) + 1 */
  865. if (x < -real::R_0)
  866. return -floor(-x);
  867. real ret = floor(x);
  868. if (x == ret)
  869. return ret;
  870. else
  871. return ret + real::R_1;
  872. }
  873. template<> real round(real const &x)
  874. {
  875. if (x < real::R_0)
  876. return -round(-x);
  877. return floor(x + (real::R_1 / 2));
  878. }
  879. template<> real fmod(real const &x, real const &y)
  880. {
  881. if (!y)
  882. return real::R_0; /* FIXME: return NaN */
  883. if (!x)
  884. return x;
  885. real tmp = round(x / y);
  886. return x - tmp * y;
  887. }
  888. template<> real sin(real const &x)
  889. {
  890. int switch_sign = x.m_signexp & 0x80000000u;
  891. real absx = fmod(fabs(x), real::R_PI * 2);
  892. if (absx > real::R_PI)
  893. {
  894. absx -= real::R_PI;
  895. switch_sign = !switch_sign;
  896. }
  897. if (absx > real::R_PI_2)
  898. absx = real::R_PI - absx;
  899. real ret = real::R_0, fact = real::R_1, xn = absx, mx2 = -absx * absx;
  900. int i = 1;
  901. for (;;)
  902. {
  903. real newret = ret + xn;
  904. if (newret == ret)
  905. break;
  906. ret = newret * ((i + 1) * (i + 2));
  907. xn *= mx2;
  908. i += 2;
  909. }
  910. ret /= fast_fact(i);
  911. /* Propagate sign */
  912. if (switch_sign)
  913. ret.m_signexp ^= 0x80000000u;
  914. return ret;
  915. }
  916. template<> real cos(real const &x)
  917. {
  918. return sin(real::R_PI_2 - x);
  919. }
  920. template<> real tan(real const &x)
  921. {
  922. /* Constrain input to [-π,π] */
  923. real y = fmod(x, real::R_PI);
  924. /* Constrain input to [-π/2,π/2] */
  925. if (y < -real::R_PI_2)
  926. y += real::R_PI;
  927. else if (y > real::R_PI_2)
  928. y -= real::R_PI;
  929. /* In [-π/4,π/4] return sin/cos */
  930. if (fabs(y) <= real::R_PI_4)
  931. return sin(y) / cos(y);
  932. /* Otherwise, return cos/sin */
  933. if (y > real::R_0)
  934. y = real::R_PI_2 - y;
  935. else
  936. y = -real::R_PI_2 - y;
  937. return cos(y) / sin(y);
  938. }
  939. static inline real asinacos(real const &x, int is_asin, int is_negative)
  940. {
  941. /* Strategy for asin(): in [-0.5..0.5], use a Taylor series around
  942. * zero. In [0.5..1], use asin(x) = π/2 - 2*asin(sqrt((1-x)/2)), and
  943. * in [-1..-0.5] just revert the sign.
  944. * Strategy for acos(): use acos(x) = π/2 - asin(x) and try not to
  945. * lose the precision around x=1. */
  946. real absx = fabs(x);
  947. int around_zero = (absx < (real::R_1 / 2));
  948. if (!around_zero)
  949. absx = sqrt((real::R_1 - absx) / 2);
  950. real ret = absx, xn = absx, x2 = absx * absx, fact1 = 2, fact2 = 1;
  951. for (int i = 1; ; i++)
  952. {
  953. xn *= x2;
  954. real mul = (real)(2 * i + 1);
  955. real newret = ret + ldexp(fact1 * xn / (mul * fact2), -2 * i);
  956. if (newret == ret)
  957. break;
  958. ret = newret;
  959. fact1 *= (real)((2 * i + 1) * (2 * i + 2));
  960. fact2 *= (real)((i + 1) * (i + 1));
  961. }
  962. if (is_negative)
  963. ret = -ret;
  964. if (around_zero)
  965. ret = is_asin ? ret : real::R_PI_2 - ret;
  966. else
  967. {
  968. real adjust = is_negative ? real::R_PI : real::R_0;
  969. if (is_asin)
  970. ret = real::R_PI_2 - adjust - ret * 2;
  971. else
  972. ret = adjust + ret * 2;
  973. }
  974. return ret;
  975. }
  976. template<> real asin(real const &x)
  977. {
  978. return asinacos(x, 1, x.m_signexp >> 31);
  979. }
  980. template<> real acos(real const &x)
  981. {
  982. return asinacos(x, 0, x.m_signexp >> 31);
  983. }
  984. template<> real atan(real const &x)
  985. {
  986. /* Computing atan(x): we choose a different Taylor series depending on
  987. * the value of x to help with convergence.
  988. *
  989. * If |x| < 0.5 we evaluate atan(y) near 0:
  990. * atan(y) = y - y^3/3 + y^5/5 - y^7/7 + y^9/9 ...
  991. *
  992. * If 0.5 <= |x| < 1.5 we evaluate atan(1+y) near 0:
  993. * atan(1+y) = π/4 + y/(1*2^1) - y^2/(2*2^1) + y^3/(3*2^2)
  994. * - y^5/(5*2^3) + y^6/(6*2^3) - y^7/(7*2^4)
  995. * + y^9/(9*2^5) - y^10/(10*2^5) + y^11/(11*2^6) ...
  996. *
  997. * If 1.5 <= |x| < 2 we evaluate atan(sqrt(3)+2y) near 0:
  998. * atan(sqrt(3)+2y) = π/3 + 1/2 y - sqrt(3)/2 y^2/2
  999. * + y^3/3 - sqrt(3)/2 y^4/4 + 1/2 y^5/5
  1000. * - 1/2 y^7/7 + sqrt(3)/2 y^8/8
  1001. * - y^9/9 + sqrt(3)/2 y^10/10 - 1/2 y^11/11
  1002. * + 1/2 y^13/13 - sqrt(3)/2 y^14/14
  1003. * + y^15/15 - sqrt(3)/2 y^16/16 + 1/2 y^17/17 ...
  1004. *
  1005. * If |x| >= 2 we evaluate atan(y) near +∞:
  1006. * atan(y) = π/2 - y^-1 + y^-3/3 - y^-5/5 + y^-7/7 - y^-9/9 ...
  1007. */
  1008. real absx = fabs(x);
  1009. if (absx < (real::R_1 / 2))
  1010. {
  1011. real ret = x, xn = x, mx2 = -x * x;
  1012. for (int i = 3; ; i += 2)
  1013. {
  1014. xn *= mx2;
  1015. real newret = ret + xn / (real)i;
  1016. if (newret == ret)
  1017. break;
  1018. ret = newret;
  1019. }
  1020. return ret;
  1021. }
  1022. real ret = 0;
  1023. if (absx < (real::R_3 / 2))
  1024. {
  1025. real y = real::R_1 - absx;
  1026. real yn = y, my2 = -y * y;
  1027. for (int i = 0; ; i += 2)
  1028. {
  1029. real newret = ret + ldexp(yn / (real)(2 * i + 1), -i - 1);
  1030. yn *= y;
  1031. newret += ldexp(yn / (real)(2 * i + 2), -i - 1);
  1032. yn *= y;
  1033. newret += ldexp(yn / (real)(2 * i + 3), -i - 2);
  1034. if (newret == ret)
  1035. break;
  1036. ret = newret;
  1037. yn *= my2;
  1038. }
  1039. ret = real::R_PI_4 - ret;
  1040. }
  1041. else if (absx < real::R_2)
  1042. {
  1043. real y = (absx - real::R_SQRT3) / 2;
  1044. real yn = y, my2 = -y * y;
  1045. for (int i = 1; ; i += 6)
  1046. {
  1047. real newret = ret + ((yn / (real)i) / 2);
  1048. yn *= y;
  1049. newret -= (real::R_SQRT3 / 2) * yn / (real)(i + 1);
  1050. yn *= y;
  1051. newret += yn / (real)(i + 2);
  1052. yn *= y;
  1053. newret -= (real::R_SQRT3 / 2) * yn / (real)(i + 3);
  1054. yn *= y;
  1055. newret += (yn / (real)(i + 4)) / 2;
  1056. if (newret == ret)
  1057. break;
  1058. ret = newret;
  1059. yn *= my2;
  1060. }
  1061. ret = real::R_PI_3 + ret;
  1062. }
  1063. else
  1064. {
  1065. real y = re(absx);
  1066. real yn = y, my2 = -y * y;
  1067. ret = y;
  1068. for (int i = 3; ; i += 2)
  1069. {
  1070. yn *= my2;
  1071. real newret = ret + yn / (real)i;
  1072. if (newret == ret)
  1073. break;
  1074. ret = newret;
  1075. }
  1076. ret = real::R_PI_2 - ret;
  1077. }
  1078. /* Propagate sign */
  1079. ret.m_signexp |= (x.m_signexp & 0x80000000u);
  1080. return ret;
  1081. }
  1082. template<> real atan2(real const &y, real const &x)
  1083. {
  1084. if (!y)
  1085. {
  1086. if ((x.m_signexp >> 31) == 0)
  1087. return y;
  1088. if (y.m_signexp >> 31)
  1089. return -real::R_PI;
  1090. return real::R_PI;
  1091. }
  1092. if (!x)
  1093. {
  1094. if (y.m_signexp >> 31)
  1095. return -real::R_PI;
  1096. return real::R_PI;
  1097. }
  1098. /* FIXME: handle the Inf and NaN cases */
  1099. real z = y / x;
  1100. real ret = atan(z);
  1101. if (x < real::R_0)
  1102. ret += (y > real::R_0) ? real::R_PI : -real::R_PI;
  1103. return ret;
  1104. }
  1105. template<> void real::hexprint() const
  1106. {
  1107. printf("%08x", m_signexp);
  1108. for (int i = 0; i < BIGITS; i++)
  1109. printf(" %08x", m_mantissa[i]);
  1110. printf("\n");
  1111. }
  1112. template<> void real::print(int ndigits) const
  1113. {
  1114. real x = *this;
  1115. if (x.m_signexp >> 31)
  1116. {
  1117. printf("-");
  1118. x = -x;
  1119. }
  1120. if (!x)
  1121. {
  1122. printf("0.0\n");
  1123. return;
  1124. }
  1125. /* Normalise x so that mantissa is in [1..9.999] */
  1126. /* FIXME: better use int64_t when the cast is implemented */
  1127. int exponent = ceil(log10(x));
  1128. x /= pow(R_10, (real)exponent);
  1129. if (x < R_1)
  1130. {
  1131. x *= R_10;
  1132. exponent--;
  1133. }
  1134. /* Print digits */
  1135. for (int i = 0; i < ndigits; i++)
  1136. {
  1137. int digit = (int)floor(x);
  1138. printf("%i", digit);
  1139. if (i == 0)
  1140. printf(".");
  1141. x -= real(digit);
  1142. x *= R_10;
  1143. }
  1144. /* Print exponent information */
  1145. if (exponent < 0)
  1146. printf("e-%i", -exponent);
  1147. else if (exponent > 0)
  1148. printf("e+%i", exponent);
  1149. printf("\n");
  1150. }
  1151. static real fast_pi()
  1152. {
  1153. /* Approximate Pi using Machin's formula: 16*atan(1/5)-4*atan(1/239) */
  1154. real ret = 0, x0 = 5, x1 = 239;
  1155. real const m0 = -x0 * x0, m1 = -x1 * x1, r16 = 16, r4 = 4;
  1156. for (int i = 1; ; i += 2)
  1157. {
  1158. real newret = ret + r16 / (x0 * (real)i) - r4 / (x1 * (real)i);
  1159. if (newret == ret)
  1160. break;
  1161. ret = newret;
  1162. x0 *= m0;
  1163. x1 *= m1;
  1164. }
  1165. return ret;
  1166. }
  1167. template<> real const real::R_0 = (real)0.0;
  1168. template<> real const real::R_1 = (real)1.0;
  1169. template<> real const real::R_2 = (real)2.0;
  1170. template<> real const real::R_3 = (real)3.0;
  1171. template<> real const real::R_10 = (real)10.0;
  1172. /*
  1173. * Initialisation order is important here:
  1174. * - fast_log() requires R_1
  1175. * - log() requires R_LN2
  1176. * - re() require R_2
  1177. * - exp() requires R_0, R_1, R_LN2
  1178. * - sqrt() requires R_3
  1179. */
  1180. template<> real const real::R_LN2 = fast_log(R_2);
  1181. template<> real const real::R_LN10 = log(R_10);
  1182. template<> real const real::R_LOG2E = re(R_LN2);
  1183. template<> real const real::R_LOG10E = re(R_LN10);
  1184. template<> real const real::R_E = exp(R_1);
  1185. template<> real const real::R_PI = fast_pi();
  1186. template<> real const real::R_PI_2 = R_PI / 2;
  1187. template<> real const real::R_PI_3 = R_PI / R_3;
  1188. template<> real const real::R_PI_4 = R_PI / 4;
  1189. template<> real const real::R_1_PI = re(R_PI);
  1190. template<> real const real::R_2_PI = R_1_PI * 2;
  1191. template<> real const real::R_2_SQRTPI = re(sqrt(R_PI)) * 2;
  1192. template<> real const real::R_SQRT2 = sqrt(R_2);
  1193. template<> real const real::R_SQRT3 = sqrt(R_3);
  1194. template<> real const real::R_SQRT1_2 = R_SQRT2 / 2;
  1195. } /* namespace lol */