|
- //
- // Lol Engine
- //
- // Copyright © 2010—2019 Sam Hocevar <sam@hocevar.net>
- //
- // Lol Engine is free software. It comes without any warranty, to
- // the extent permitted by applicable law. You can redistribute it
- // and/or modify it under the terms of the Do What the Fuck You Want
- // to Public License, Version 2, as published by the WTFPL Task Force.
- // See http://www.wtfpl.net/ for more details.
- //
-
- #include <lol/engine-internal.h>
-
- namespace lol
- {
-
- /* These macros implement a finite iterator useful to build lookup
- * tables. For instance, S64(0) will call S1(x) for all values of x
- * between 0 and 63.
- * Due to the exponential behaviour of the calls, the stress on the
- * compiler may be important. */
- #define S4(x) S1((x)), S1((x)+1), S1((x)+2), S1((x)+3)
- #define S16(x) S4((x)), S4((x)+4), S4((x)+8), S4((x)+12)
- #define S64(x) S16((x)), S16((x)+16), S16((x)+32), S16((x)+48)
- #define S256(x) S64((x)), S64((x)+64), S64((x)+128), S64((x)+192)
- #define S1024(x) S256((x)), S256((x)+256), S256((x)+512), S256((x)+768)
-
- /* Lookup table-based algorithm from “Fast Half Float Conversions”
- * by Jeroen van der Zijp, November 2008. No rounding is performed,
- * and some NaN values may be incorrectly converted to Inf (because
- * the lowest order bits in the mantissa are ignored). */
- static inline uint16_t float_to_half_nobranch(uint32_t x)
- {
- static uint16_t const basetable[512] =
- {
- #define S1(i) (((i) < 103) ? 0x0000u : \
- ((i) < 113) ? 0x0400u >> (0x1f & (113 - (i))) : \
- ((i) < 143) ? ((i) - 112) << 10 : 0x7c00u)
- S256(0),
- #undef S1
- #define S1(i) (uint16_t)(0x8000u | basetable[i])
- S256(0),
- #undef S1
- };
-
- static uint8_t const shifttable[512] =
- {
- #define S1(i) (((i) < 103) ? 24 : \
- ((i) < 113) ? 126 - (i) : \
- ((i) < 143 || (i) == 255) ? 13 : 24)
- S256(0), S256(0),
- #undef S1
- };
-
- uint16_t bits = basetable[(x >> 23) & 0x1ff];
- bits |= (x & 0x007fffff) >> shifttable[(x >> 23) & 0x1ff];
- return bits;
- }
-
- /* This method is faster than the OpenEXR implementation (very often
- * used, eg. in Ogre), with the additional benefit of rounding, inspired
- * by James Tursa’s half-precision code. */
- static inline uint16_t float_to_half_branch(uint32_t x)
- {
- uint16_t bits = (x >> 16) & 0x8000; /* Get the sign */
- uint16_t m = (x >> 12) & 0x07ff; /* Keep one extra bit for rounding */
- unsigned int e = (x >> 23) & 0xff; /* Using int is faster here */
-
- /* If zero, or denormal, or exponent underflows too much for a denormal
- * half, return signed zero. */
- if (e < 103)
- return bits;
-
- /* If NaN, return NaN. If Inf or exponent overflow, return Inf. */
- if (e > 142)
- {
- bits |= 0x7c00u;
- /* If exponent was 0xff and one mantissa bit was set, it means NaN,
- * not Inf, so make sure we set one mantissa bit too. */
- bits |= e == 255 && (x & 0x007fffffu);
- return bits;
- }
-
- /* If exponent underflows but not too much, return a denormal */
- if (e < 113)
- {
- m |= 0x0800u;
- /* Extra rounding may overflow and set mantissa to 0 and exponent
- * to 1, which is OK. */
- bits |= (m >> (114 - e)) + ((m >> (113 - e)) & 1);
- return bits;
- }
-
- bits |= ((e - 112) << 10) | (m >> 1);
- /* Extra rounding. An overflow will set mantissa to 0 and increment
- * the exponent, which is OK. */
- bits += m & 1;
- return bits;
- }
-
- /* We use this magic table, inspired by De Bruijn sequences, to compute a
- * branchless integer log2. The actual value fetched is 24-log2(x+1) for x
- * in 1, 3, 7, f, 1f, 3f, 7f, ff, 1fe, 1ff, 3fc, 3fd, 3fe, 3ff. See
- * http://lolengine.net/blog/2012/04/03/beyond-de-bruijn for an explanation
- * of how the value 0x5a1a1a2u was obtained. */
- static uint32_t const shifttable[16] =
- {
- 23, 22, 21, 15, 0, 20, 18, 14, 14, 16, 19, 0, 17, 0, 0, 0,
- };
- static uint32_t const shiftmagic = 0x5a1a1a2u;
-
- /* Lookup table-based algorithm from “Fast Half Float Conversions”
- * by Jeroen van der Zijp, November 2008. Tables are generated using
- * the C++ preprocessor, thanks to a branchless implementation also
- * used in half_to_float_branch(). This code is very fast when performing
- * conversions on arrays of values. */
- static inline uint32_t half_to_float_nobranch(uint16_t x)
- {
- #define M3(i) ((i) | ((i) >> 1))
- #define M7(i) (M3(i) | (M3(i) >> 2))
- #define MF(i) (M7(i) | (M7(i) >> 4))
- #define E(i) shifttable[(uint32_t)((uint64_t)MF(i) * shiftmagic) >> 28]
-
- static uint32_t const mantissatable[2048] =
- {
- #define S1(i) (((i) == 0) ? 0 : ((125 - E(i)) << 23) + ((i) << E(i)))
- S1024(0),
- #undef S1
- #define S1(i) (0x38000000u + ((i) << 13))
- S1024(0),
- #undef S1
- };
-
- static uint32_t const exponenttable[64] =
- {
- #define S1(i) (((i) == 0) ? 0 : \
- ((i) < 31) ? ((uint32_t)(i) << 23) : \
- ((i) == 31) ? 0x47800000u : \
- ((i) == 32) ? 0x80000000u : \
- ((i) < 63) ? (0x80000000u | (((i) - 32) << 23)) : 0xc7800000)
- S64(0),
- #undef S1
- };
-
- static int const offsettable[64] =
- {
- #define S1(i) (((i) == 0 || (i) == 32) ? 0 : 1024)
- S64(0),
- #undef S1
- };
-
- return mantissatable[offsettable[x >> 10] + (x & 0x3ff)]
- + exponenttable[x >> 10];
- }
-
- /* This algorithm is similar to the OpenEXR implementation, except it
- * uses branchless code in the denormal path. This is slower than the
- * table version, but will be more friendly to the cache for occasional
- * uses. */
- static inline uint32_t half_to_float_branch(uint16_t x)
- {
- uint32_t s = (x & 0x8000u) << 16;
-
- if ((x & 0x7fffu) == 0)
- return (uint32_t)x << 16;
-
- uint32_t e = x & 0x7c00u;
- uint32_t m = x & 0x03ffu;
-
- if (e == 0)
- {
- /* m has 10 significant bits but replicating the leading bit to
- * 8 positions instead of 16 works just as well because of our
- * handcrafted shiftmagic table. */
- uint32_t v = m | (m >> 1);
- v |= v >> 2;
- v |= v >> 4;
-
- e = shifttable[(v * shiftmagic) >> 28];
-
- /* We don't have to remove the 10th mantissa bit because it gets
- * added to our underestimated exponent. */
- return s | (((125 - e) << 23) + (m << e));
- }
-
- if (e == 0x7c00u)
- {
- /* The amd64 pipeline likes the if() better than a ternary operator
- * or any other trick I could find. --sam */
- if (m == 0)
- return s | 0x7f800000u;
- return s | 0x7fc00000u;
- }
-
- return s | (((e >> 10) + 112) << 23) | (m << 13);
- }
-
- /* Constructor from float. Uses the non-branching version because benchmarks
- * indicate it is about 80% faster on amd64, and 20% faster on the PS3. The
- * penalty of loading the lookup tables does not seem important. */
- half half::makefast(float f)
- {
- union { float f; uint32_t x; } u = { f };
- return makebits(float_to_half_nobranch(u.x));
- }
-
- /* Constructor from float with better precision. */
- half half::makeaccurate(float f)
- {
- union { float f; uint32_t x; } u = { f };
- return makebits(float_to_half_branch(u.x));
- }
-
- /* Cast to float. Uses the branching version because loading the tables
- * for only one value is going to be cache-expensive. */
- half::operator float() const
- {
- union { float f; uint32_t x; } u;
- u.x = half_to_float_branch(bits);
- return u.f;
- }
-
- void half::convert(half *dst, float const *src, size_t nelem)
- {
- for (size_t i = 0; i < nelem; i++)
- {
- union { float f; uint32_t x; } u;
- u.f = *src++;
- *dst++ = makebits(float_to_half_nobranch(u.x));
- }
- }
-
- void half::convert(float *dst, half const *src, size_t nelem)
- {
- for (size_t i = 0; i < nelem; i++)
- {
- union { float f; uint32_t x; } u;
-
- /* This code is really too slow on the PS3, even with the denormal
- * handling stripped off. */
- u.x = half_to_float_nobranch((*src++).bits);
- *dst++ = u.f;
- }
- }
-
- } /* namespace lol */
|