You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

249 lines
7.9 KiB

  1. //
  2. // Lol Engine
  3. //
  4. // Copyright © 2010—2019 Sam Hocevar <sam@hocevar.net>
  5. //
  6. // Lol Engine is free software. It comes without any warranty, to
  7. // the extent permitted by applicable law. You can redistribute it
  8. // and/or modify it under the terms of the Do What the Fuck You Want
  9. // to Public License, Version 2, as published by the WTFPL Task Force.
  10. // See http://www.wtfpl.net/ for more details.
  11. //
  12. #include <lol/engine-internal.h>
  13. namespace lol
  14. {
  15. /* These macros implement a finite iterator useful to build lookup
  16. * tables. For instance, S64(0) will call S1(x) for all values of x
  17. * between 0 and 63.
  18. * Due to the exponential behaviour of the calls, the stress on the
  19. * compiler may be important. */
  20. #define S4(x) S1((x)), S1((x)+1), S1((x)+2), S1((x)+3)
  21. #define S16(x) S4((x)), S4((x)+4), S4((x)+8), S4((x)+12)
  22. #define S64(x) S16((x)), S16((x)+16), S16((x)+32), S16((x)+48)
  23. #define S256(x) S64((x)), S64((x)+64), S64((x)+128), S64((x)+192)
  24. #define S1024(x) S256((x)), S256((x)+256), S256((x)+512), S256((x)+768)
  25. /* Lookup table-based algorithm from “Fast Half Float Conversions”
  26. * by Jeroen van der Zijp, November 2008. No rounding is performed,
  27. * and some NaN values may be incorrectly converted to Inf (because
  28. * the lowest order bits in the mantissa are ignored). */
  29. static inline uint16_t float_to_half_nobranch(uint32_t x)
  30. {
  31. static uint16_t const basetable[512] =
  32. {
  33. #define S1(i) (((i) < 103) ? 0x0000u : \
  34. ((i) < 113) ? 0x0400u >> (0x1f & (113 - (i))) : \
  35. ((i) < 143) ? ((i) - 112) << 10 : 0x7c00u)
  36. S256(0),
  37. #undef S1
  38. #define S1(i) (uint16_t)(0x8000u | basetable[i])
  39. S256(0),
  40. #undef S1
  41. };
  42. static uint8_t const shifttable[512] =
  43. {
  44. #define S1(i) (((i) < 103) ? 24 : \
  45. ((i) < 113) ? 126 - (i) : \
  46. ((i) < 143 || (i) == 255) ? 13 : 24)
  47. S256(0), S256(0),
  48. #undef S1
  49. };
  50. uint16_t bits = basetable[(x >> 23) & 0x1ff];
  51. bits |= (x & 0x007fffff) >> shifttable[(x >> 23) & 0x1ff];
  52. return bits;
  53. }
  54. /* This method is faster than the OpenEXR implementation (very often
  55. * used, eg. in Ogre), with the additional benefit of rounding, inspired
  56. * by James Tursa’s half-precision code. */
  57. static inline uint16_t float_to_half_branch(uint32_t x)
  58. {
  59. uint16_t bits = (x >> 16) & 0x8000; /* Get the sign */
  60. uint16_t m = (x >> 12) & 0x07ff; /* Keep one extra bit for rounding */
  61. unsigned int e = (x >> 23) & 0xff; /* Using int is faster here */
  62. /* If zero, or denormal, or exponent underflows too much for a denormal
  63. * half, return signed zero. */
  64. if (e < 103)
  65. return bits;
  66. /* If NaN, return NaN. If Inf or exponent overflow, return Inf. */
  67. if (e > 142)
  68. {
  69. bits |= 0x7c00u;
  70. /* If exponent was 0xff and one mantissa bit was set, it means NaN,
  71. * not Inf, so make sure we set one mantissa bit too. */
  72. bits |= e == 255 && (x & 0x007fffffu);
  73. return bits;
  74. }
  75. /* If exponent underflows but not too much, return a denormal */
  76. if (e < 113)
  77. {
  78. m |= 0x0800u;
  79. /* Extra rounding may overflow and set mantissa to 0 and exponent
  80. * to 1, which is OK. */
  81. bits |= (m >> (114 - e)) + ((m >> (113 - e)) & 1);
  82. return bits;
  83. }
  84. bits |= ((e - 112) << 10) | (m >> 1);
  85. /* Extra rounding. An overflow will set mantissa to 0 and increment
  86. * the exponent, which is OK. */
  87. bits += m & 1;
  88. return bits;
  89. }
  90. /* We use this magic table, inspired by De Bruijn sequences, to compute a
  91. * branchless integer log2. The actual value fetched is 24-log2(x+1) for x
  92. * in 1, 3, 7, f, 1f, 3f, 7f, ff, 1fe, 1ff, 3fc, 3fd, 3fe, 3ff. See
  93. * http://lolengine.net/blog/2012/04/03/beyond-de-bruijn for an explanation
  94. * of how the value 0x5a1a1a2u was obtained. */
  95. static uint32_t const shifttable[16] =
  96. {
  97. 23, 22, 21, 15, 0, 20, 18, 14, 14, 16, 19, 0, 17, 0, 0, 0,
  98. };
  99. static uint32_t const shiftmagic = 0x5a1a1a2u;
  100. /* Lookup table-based algorithm from “Fast Half Float Conversions”
  101. * by Jeroen van der Zijp, November 2008. Tables are generated using
  102. * the C++ preprocessor, thanks to a branchless implementation also
  103. * used in half_to_float_branch(). This code is very fast when performing
  104. * conversions on arrays of values. */
  105. static inline uint32_t half_to_float_nobranch(uint16_t x)
  106. {
  107. #define M3(i) ((i) | ((i) >> 1))
  108. #define M7(i) (M3(i) | (M3(i) >> 2))
  109. #define MF(i) (M7(i) | (M7(i) >> 4))
  110. #define E(i) shifttable[(uint32_t)((uint64_t)MF(i) * shiftmagic) >> 28]
  111. static uint32_t const mantissatable[2048] =
  112. {
  113. #define S1(i) (((i) == 0) ? 0 : ((125 - E(i)) << 23) + ((i) << E(i)))
  114. S1024(0),
  115. #undef S1
  116. #define S1(i) (0x38000000u + ((i) << 13))
  117. S1024(0),
  118. #undef S1
  119. };
  120. static uint32_t const exponenttable[64] =
  121. {
  122. #define S1(i) (((i) == 0) ? 0 : \
  123. ((i) < 31) ? ((uint32_t)(i) << 23) : \
  124. ((i) == 31) ? 0x47800000u : \
  125. ((i) == 32) ? 0x80000000u : \
  126. ((i) < 63) ? (0x80000000u | (((i) - 32) << 23)) : 0xc7800000)
  127. S64(0),
  128. #undef S1
  129. };
  130. static int const offsettable[64] =
  131. {
  132. #define S1(i) (((i) == 0 || (i) == 32) ? 0 : 1024)
  133. S64(0),
  134. #undef S1
  135. };
  136. return mantissatable[offsettable[x >> 10] + (x & 0x3ff)]
  137. + exponenttable[x >> 10];
  138. }
  139. /* This algorithm is similar to the OpenEXR implementation, except it
  140. * uses branchless code in the denormal path. This is slower than the
  141. * table version, but will be more friendly to the cache for occasional
  142. * uses. */
  143. static inline uint32_t half_to_float_branch(uint16_t x)
  144. {
  145. uint32_t s = (x & 0x8000u) << 16;
  146. if ((x & 0x7fffu) == 0)
  147. return (uint32_t)x << 16;
  148. uint32_t e = x & 0x7c00u;
  149. uint32_t m = x & 0x03ffu;
  150. if (e == 0)
  151. {
  152. /* m has 10 significant bits but replicating the leading bit to
  153. * 8 positions instead of 16 works just as well because of our
  154. * handcrafted shiftmagic table. */
  155. uint32_t v = m | (m >> 1);
  156. v |= v >> 2;
  157. v |= v >> 4;
  158. e = shifttable[(v * shiftmagic) >> 28];
  159. /* We don't have to remove the 10th mantissa bit because it gets
  160. * added to our underestimated exponent. */
  161. return s | (((125 - e) << 23) + (m << e));
  162. }
  163. if (e == 0x7c00u)
  164. {
  165. /* The amd64 pipeline likes the if() better than a ternary operator
  166. * or any other trick I could find. --sam */
  167. if (m == 0)
  168. return s | 0x7f800000u;
  169. return s | 0x7fc00000u;
  170. }
  171. return s | (((e >> 10) + 112) << 23) | (m << 13);
  172. }
  173. /* Constructor from float. Uses the non-branching version because benchmarks
  174. * indicate it is about 80% faster on amd64, and 20% faster on the PS3. The
  175. * penalty of loading the lookup tables does not seem important. */
  176. half half::makefast(float f)
  177. {
  178. union { float f; uint32_t x; } u = { f };
  179. return makebits(float_to_half_nobranch(u.x));
  180. }
  181. /* Constructor from float with better precision. */
  182. half half::makeaccurate(float f)
  183. {
  184. union { float f; uint32_t x; } u = { f };
  185. return makebits(float_to_half_branch(u.x));
  186. }
  187. /* Cast to float. Uses the branching version because loading the tables
  188. * for only one value is going to be cache-expensive. */
  189. half::operator float() const
  190. {
  191. union { float f; uint32_t x; } u;
  192. u.x = half_to_float_branch(bits);
  193. return u.f;
  194. }
  195. void half::convert(half *dst, float const *src, size_t nelem)
  196. {
  197. for (size_t i = 0; i < nelem; i++)
  198. {
  199. union { float f; uint32_t x; } u;
  200. u.f = *src++;
  201. *dst++ = makebits(float_to_half_nobranch(u.x));
  202. }
  203. }
  204. void half::convert(float *dst, half const *src, size_t nelem)
  205. {
  206. for (size_t i = 0; i < nelem; i++)
  207. {
  208. union { float f; uint32_t x; } u;
  209. /* This code is really too slow on the PS3, even with the denormal
  210. * handling stripped off. */
  211. u.x = half_to_float_nobranch((*src++).bits);
  212. *dst++ = u.f;
  213. }
  214. }
  215. } /* namespace lol */