1443 行
36 KiB

  1. //
  2. // Lol Engine
  3. //
  4. // Copyright: (c) 2010-2013 Sam Hocevar <sam@hocevar.net>
  5. // This program is free software; you can redistribute it and/or
  6. // modify it under the terms of the Do What The Fuck You Want To
  7. // Public License, Version 2, as published by Sam Hocevar. See
  8. // http://www.wtfpl.net/ for more details.
  9. //
  10. #include <lol/engine-internal.h>
  11. #include <new>
  12. #include <cstring>
  13. #include <cstdio>
  14. #include <cstdlib>
  15. namespace lol
  16. {
  17. /*
  18. * First handle explicit specialisation of our templates.
  19. *
  20. * Initialisation order is not important because everything is
  21. * done on demand, but here is the dependency list anyway:
  22. * - fast_log() requires R_1
  23. * - log() requires R_LN2
  24. * - inverse() require R_2
  25. * - exp() requires R_0, R_1, R_LN2
  26. * - sqrt() requires R_3
  27. */
  28. static real fast_log(real const &x);
  29. static real fast_pi();
  30. #define LOL_CONSTANT_GETTER(name, value) \
  31. template<> real const& real::name() \
  32. { \
  33. static real const ret = value; \
  34. return ret; \
  35. }
  36. LOL_CONSTANT_GETTER(R_0, (real)0.0);
  37. LOL_CONSTANT_GETTER(R_1, (real)1.0);
  38. LOL_CONSTANT_GETTER(R_2, (real)2.0);
  39. LOL_CONSTANT_GETTER(R_3, (real)3.0);
  40. LOL_CONSTANT_GETTER(R_10, (real)10.0);
  41. LOL_CONSTANT_GETTER(R_LN2, fast_log(R_2()));
  42. LOL_CONSTANT_GETTER(R_LN10, log(R_10()));
  43. LOL_CONSTANT_GETTER(R_LOG2E, inverse(R_LN2()));
  44. LOL_CONSTANT_GETTER(R_LOG10E, inverse(R_LN10()));
  45. LOL_CONSTANT_GETTER(R_E, exp(R_1()));
  46. LOL_CONSTANT_GETTER(R_PI, fast_pi());
  47. LOL_CONSTANT_GETTER(R_PI_2, R_PI() / 2);
  48. LOL_CONSTANT_GETTER(R_PI_3, R_PI() / R_3());
  49. LOL_CONSTANT_GETTER(R_PI_4, R_PI() / 4);
  50. LOL_CONSTANT_GETTER(R_1_PI, inverse(R_PI()));
  51. LOL_CONSTANT_GETTER(R_2_PI, R_1_PI() * 2);
  52. LOL_CONSTANT_GETTER(R_2_SQRTPI, inverse(sqrt(R_PI())) * 2);
  53. LOL_CONSTANT_GETTER(R_SQRT2, sqrt(R_2()));
  54. LOL_CONSTANT_GETTER(R_SQRT3, sqrt(R_3()));
  55. LOL_CONSTANT_GETTER(R_SQRT1_2, R_SQRT2() / 2);
  56. #undef LOL_CONSTANT_GETTER
  57. /*
  58. * Now carry on with the rest of the Real class.
  59. */
  60. template<> real::Real()
  61. {
  62. m_mantissa = new uint32_t[BIGITS];
  63. memset(m_mantissa, 0, BIGITS * sizeof(uint32_t));
  64. m_signexp = 0;
  65. }
  66. template<> real::Real(real const &x)
  67. {
  68. m_mantissa = new uint32_t[BIGITS];
  69. memcpy(m_mantissa, x.m_mantissa, BIGITS * sizeof(uint32_t));
  70. m_signexp = x.m_signexp;
  71. }
  72. template<> real const &real::operator =(real const &x)
  73. {
  74. if (&x != this)
  75. {
  76. memcpy(m_mantissa, x.m_mantissa, BIGITS * sizeof(uint32_t));
  77. m_signexp = x.m_signexp;
  78. }
  79. return *this;
  80. }
  81. template<> real::~Real()
  82. {
  83. delete[] m_mantissa;
  84. }
  85. /* FIXME: 64-bit integer loading is incorrect,we lose precision. */
  86. template<> real::Real(int32_t i) { new(this) real((double)i); }
  87. template<> real::Real(uint32_t i) { new(this) real((double)i); }
  88. template<> real::Real(int64_t i) { new(this) real((double)i); }
  89. template<> real::Real(uint64_t i) { new(this) real((double)i); }
  90. template<> real::Real(float f) { new(this) real((double)f); }
  91. template<> real::Real(double d)
  92. {
  93. new(this) real();
  94. union { double d; uint64_t x; } u = { d };
  95. uint32_t sign = (u.x >> 63) << 31;
  96. uint32_t exponent = (u.x << 1) >> 53;
  97. switch (exponent)
  98. {
  99. case 0x00:
  100. m_signexp = sign;
  101. break;
  102. case 0x7ff:
  103. m_signexp = sign | 0x7fffffffu;
  104. break;
  105. default:
  106. m_signexp = sign | (exponent + (1 << 30) - (1 << 10));
  107. break;
  108. }
  109. m_mantissa[0] = (uint32_t)(u.x >> 20);
  110. m_mantissa[1] = (uint32_t)(u.x << 12);
  111. memset(m_mantissa + 2, 0, (BIGITS - 2) * sizeof(m_mantissa[0]));
  112. }
  113. template<> real::operator float() const { return (float)(double)(*this); }
  114. template<> real::operator int() const { return (int)(double)(*this); }
  115. template<> real::operator unsigned() const { return (unsigned)(double)(*this); }
  116. template<> real::operator double() const
  117. {
  118. union { double d; uint64_t x; } u;
  119. /* Get sign */
  120. u.x = m_signexp >> 31;
  121. u.x <<= 11;
  122. /* Compute new exponent */
  123. uint32_t exponent = (m_signexp << 1) >> 1;
  124. int e = (int)exponent - (1 << 30) + (1 << 10);
  125. if (e < 0)
  126. u.x <<= 52;
  127. else if (e >= 0x7ff)
  128. {
  129. u.x |= 0x7ff;
  130. u.x <<= 52;
  131. }
  132. else
  133. {
  134. u.x |= e;
  135. /* Store mantissa if necessary */
  136. u.x <<= 32;
  137. u.x |= m_mantissa[0];
  138. u.x <<= 20;
  139. u.x |= m_mantissa[1] >> 12;
  140. /* Rounding */
  141. u.x += (m_mantissa[1] >> 11) & 1;
  142. }
  143. return u.d;
  144. }
  145. /*
  146. * Create a real number from an ASCII representation
  147. */
  148. template<> real::Real(char const *str)
  149. {
  150. real ret = 0;
  151. int exponent = 0;
  152. bool comma = false, nonzero = false, negative = false, finished = false;
  153. for (char const *p = str; *p && !finished; p++)
  154. {
  155. switch (*p)
  156. {
  157. case '-':
  158. case '+':
  159. if (p != str)
  160. break;
  161. negative = (*p == '-');
  162. break;
  163. case '.':
  164. if (comma)
  165. finished = true;
  166. comma = true;
  167. break;
  168. case '0': case '1': case '2': case '3': case '4':
  169. case '5': case '6': case '7': case '8': case '9':
  170. if (nonzero)
  171. {
  172. real x = ret + ret;
  173. x = x + x + ret;
  174. ret = x + x;
  175. }
  176. if (*p != '0')
  177. {
  178. ret += (int)(*p - '0');
  179. nonzero = true;
  180. }
  181. if (comma)
  182. exponent--;
  183. break;
  184. case 'e':
  185. case 'E':
  186. exponent += atoi(p + 1);
  187. finished = true;
  188. break;
  189. default:
  190. finished = true;
  191. break;
  192. }
  193. }
  194. if (exponent)
  195. ret *= pow(R_10(), (real)exponent);
  196. if (negative)
  197. ret = -ret;
  198. new(this) real(ret);
  199. }
  200. template<> real real::operator +() const
  201. {
  202. return *this;
  203. }
  204. template<> real real::operator -() const
  205. {
  206. real ret = *this;
  207. ret.m_signexp ^= 0x80000000u;
  208. return ret;
  209. }
  210. template<> real real::operator +(real const &x) const
  211. {
  212. if (x.m_signexp << 1 == 0)
  213. return *this;
  214. /* Ensure both arguments are positive. Otherwise, switch signs,
  215. * or replace + with -. */
  216. if (m_signexp >> 31)
  217. return -(-*this + -x);
  218. if (x.m_signexp >> 31)
  219. return *this - (-x);
  220. /* Ensure *this has the larger exponent (no need for the mantissa to
  221. * be larger, as in subtraction). Otherwise, switch. */
  222. if ((m_signexp << 1) < (x.m_signexp << 1))
  223. return x + *this;
  224. real ret;
  225. int e1 = m_signexp - (1 << 30) + 1;
  226. int e2 = x.m_signexp - (1 << 30) + 1;
  227. int bigoff = (e1 - e2) / BIGIT_BITS;
  228. int off = e1 - e2 - bigoff * BIGIT_BITS;
  229. if (bigoff > BIGITS)
  230. return *this;
  231. ret.m_signexp = m_signexp;
  232. uint64_t carry = 0;
  233. for (int i = BIGITS; i--; )
  234. {
  235. carry += m_mantissa[i];
  236. if (i - bigoff >= 0)
  237. carry += x.m_mantissa[i - bigoff] >> off;
  238. if (off && i - bigoff > 0)
  239. carry += (x.m_mantissa[i - bigoff - 1] << (BIGIT_BITS - off)) & 0xffffffffu;
  240. else if (i - bigoff == 0)
  241. carry += (uint64_t)1 << (BIGIT_BITS - off);
  242. ret.m_mantissa[i] = (uint32_t)carry;
  243. carry >>= BIGIT_BITS;
  244. }
  245. /* Renormalise in case we overflowed the mantissa */
  246. if (carry)
  247. {
  248. carry--;
  249. for (int i = 0; i < BIGITS; i++)
  250. {
  251. uint32_t tmp = ret.m_mantissa[i];
  252. ret.m_mantissa[i] = ((uint32_t)carry << (BIGIT_BITS - 1))
  253. | (tmp >> 1);
  254. carry = tmp & 1u;
  255. }
  256. ret.m_signexp++;
  257. }
  258. return ret;
  259. }
  260. template<> real real::operator -(real const &x) const
  261. {
  262. if (x.m_signexp << 1 == 0)
  263. return *this;
  264. /* Ensure both arguments are positive. Otherwise, switch signs,
  265. * or replace - with +. */
  266. if (m_signexp >> 31)
  267. return -(-*this + x);
  268. if (x.m_signexp >> 31)
  269. return (*this) + (-x);
  270. /* Ensure *this is larger than x */
  271. if (*this < x)
  272. return -(x - *this);
  273. real ret;
  274. int e1 = m_signexp - (1 << 30) + 1;
  275. int e2 = x.m_signexp - (1 << 30) + 1;
  276. int bigoff = (e1 - e2) / BIGIT_BITS;
  277. int off = e1 - e2 - bigoff * BIGIT_BITS;
  278. if (bigoff > BIGITS)
  279. return *this;
  280. ret.m_signexp = m_signexp;
  281. /* int64_t instead of uint64_t to preserve sign through shifts */
  282. int64_t carry = 0;
  283. for (int i = 0; i < bigoff; i++)
  284. {
  285. carry -= x.m_mantissa[BIGITS - 1 - i];
  286. /* Emulates a signed shift */
  287. carry >>= BIGIT_BITS;
  288. carry |= carry << BIGIT_BITS;
  289. }
  290. if (bigoff < BIGITS)
  291. carry -= x.m_mantissa[BIGITS - 1 - bigoff] & (((int64_t)1 << off) - 1);
  292. carry /= (int64_t)1 << off;
  293. for (int i = BIGITS; i--; )
  294. {
  295. carry += m_mantissa[i];
  296. if (i - bigoff >= 0)
  297. carry -= x.m_mantissa[i - bigoff] >> off;
  298. if (off && i - bigoff > 0)
  299. carry -= (x.m_mantissa[i - bigoff - 1] << (BIGIT_BITS - off)) & 0xffffffffu;
  300. else if (i - bigoff == 0)
  301. carry -= (uint64_t)1 << (BIGIT_BITS - off);
  302. ret.m_mantissa[i] = (uint32_t)carry;
  303. carry >>= BIGIT_BITS;
  304. carry |= carry << BIGIT_BITS;
  305. }
  306. carry += 1;
  307. /* Renormalise if we underflowed the mantissa */
  308. if (carry == 0)
  309. {
  310. /* How much do we need to shift the mantissa? FIXME: this could
  311. * be computed above */
  312. off = 0;
  313. for (int i = 0; i < BIGITS; i++)
  314. {
  315. if (!ret.m_mantissa[i])
  316. {
  317. off += BIGIT_BITS;
  318. continue;
  319. }
  320. for (uint32_t tmp = ret.m_mantissa[i]; tmp < 0x80000000u; tmp <<= 1)
  321. off++;
  322. break;
  323. }
  324. if (off == BIGITS * BIGIT_BITS)
  325. ret.m_signexp &= 0x80000000u;
  326. else
  327. {
  328. off++; /* Shift one more to get rid of the leading one */
  329. ret.m_signexp -= off;
  330. bigoff = off / BIGIT_BITS;
  331. off -= bigoff * BIGIT_BITS;
  332. for (int i = 0; i < BIGITS; i++)
  333. {
  334. uint32_t tmp = 0;
  335. if (i + bigoff < BIGITS)
  336. tmp |= ret.m_mantissa[i + bigoff] << off;
  337. if (off && i + bigoff + 1 < BIGITS)
  338. tmp |= ret.m_mantissa[i + bigoff + 1] >> (BIGIT_BITS - off);
  339. ret.m_mantissa[i] = tmp;
  340. }
  341. }
  342. }
  343. return ret;
  344. }
  345. template<> real real::operator *(real const &x) const
  346. {
  347. real ret;
  348. if (m_signexp << 1 == 0 || x.m_signexp << 1 == 0)
  349. {
  350. ret = (m_signexp << 1 == 0) ? *this : x;
  351. ret.m_signexp ^= x.m_signexp & 0x80000000u;
  352. return ret;
  353. }
  354. ret.m_signexp = (m_signexp ^ x.m_signexp) & 0x80000000u;
  355. int e = (m_signexp & 0x7fffffffu) - (1 << 30) + 1
  356. + (x.m_signexp & 0x7fffffffu) - (1 << 30) + 1;
  357. /* Accumulate low order product; no need to store it, we just
  358. * want the carry value */
  359. uint64_t carry = 0, hicarry = 0, prev;
  360. for (int i = 0; i < BIGITS; i++)
  361. {
  362. for (int j = 0; j < i + 1; j++)
  363. {
  364. prev = carry;
  365. carry += (uint64_t)m_mantissa[BIGITS - 1 - j]
  366. * (uint64_t)x.m_mantissa[BIGITS - 1 + j - i];
  367. if (carry < prev)
  368. hicarry++;
  369. }
  370. carry >>= BIGIT_BITS;
  371. carry |= hicarry << BIGIT_BITS;
  372. hicarry >>= BIGIT_BITS;
  373. }
  374. for (int i = 0; i < BIGITS; i++)
  375. {
  376. for (int j = i + 1; j < BIGITS; j++)
  377. {
  378. prev = carry;
  379. carry += (uint64_t)m_mantissa[BIGITS - 1 - j]
  380. * (uint64_t)x.m_mantissa[j - 1 - i];
  381. if (carry < prev)
  382. hicarry++;
  383. }
  384. prev = carry;
  385. carry += m_mantissa[BIGITS - 1 - i];
  386. carry += x.m_mantissa[BIGITS - 1 - i];
  387. if (carry < prev)
  388. hicarry++;
  389. ret.m_mantissa[BIGITS - 1 - i] = carry & 0xffffffffu;
  390. carry >>= BIGIT_BITS;
  391. carry |= hicarry << BIGIT_BITS;
  392. hicarry >>= BIGIT_BITS;
  393. }
  394. /* Renormalise in case we overflowed the mantissa */
  395. if (carry)
  396. {
  397. carry--;
  398. for (int i = 0; i < BIGITS; i++)
  399. {
  400. uint32_t tmp = (uint32_t)ret.m_mantissa[i];
  401. ret.m_mantissa[i] = ((uint32_t)carry << (BIGIT_BITS - 1))
  402. | (tmp >> 1);
  403. carry = tmp & 1u;
  404. }
  405. e++;
  406. }
  407. ret.m_signexp |= e + (1 << 30) - 1;
  408. return ret;
  409. }
  410. template<> real real::operator /(real const &x) const
  411. {
  412. return *this * inverse(x);
  413. }
  414. template<> real const &real::operator +=(real const &x)
  415. {
  416. real tmp = *this;
  417. return *this = tmp + x;
  418. }
  419. template<> real const &real::operator -=(real const &x)
  420. {
  421. real tmp = *this;
  422. return *this = tmp - x;
  423. }
  424. template<> real const &real::operator *=(real const &x)
  425. {
  426. real tmp = *this;
  427. return *this = tmp * x;
  428. }
  429. template<> real const &real::operator /=(real const &x)
  430. {
  431. real tmp = *this;
  432. return *this = tmp / x;
  433. }
  434. template<> bool real::operator ==(real const &x) const
  435. {
  436. if ((m_signexp << 1) == 0 && (x.m_signexp << 1) == 0)
  437. return true;
  438. if (m_signexp != x.m_signexp)
  439. return false;
  440. return memcmp(m_mantissa, x.m_mantissa, BIGITS * sizeof(uint32_t)) == 0;
  441. }
  442. template<> bool real::operator !=(real const &x) const
  443. {
  444. return !(*this == x);
  445. }
  446. template<> bool real::operator <(real const &x) const
  447. {
  448. /* Ensure both numbers are positive */
  449. if (m_signexp >> 31)
  450. return (x.m_signexp >> 31) ? -*this > -x : true;
  451. if (x.m_signexp >> 31)
  452. return false;
  453. /* Compare all relevant bits */
  454. if (m_signexp != x.m_signexp)
  455. return m_signexp < x.m_signexp;
  456. for (int i = 0; i < BIGITS; i++)
  457. if (m_mantissa[i] != x.m_mantissa[i])
  458. return m_mantissa[i] < x.m_mantissa[i];
  459. return false;
  460. }
  461. template<> bool real::operator <=(real const &x) const
  462. {
  463. return !(*this > x);
  464. }
  465. template<> bool real::operator >(real const &x) const
  466. {
  467. /* Ensure both numbers are positive */
  468. if (m_signexp >> 31)
  469. return (x.m_signexp >> 31) ? -*this < -x : false;
  470. if (x.m_signexp >> 31)
  471. return true;
  472. /* Compare all relevant bits */
  473. if (m_signexp != x.m_signexp)
  474. return m_signexp > x.m_signexp;
  475. for (int i = 0; i < BIGITS; i++)
  476. if (m_mantissa[i] != x.m_mantissa[i])
  477. return m_mantissa[i] > x.m_mantissa[i];
  478. return false;
  479. }
  480. template<> bool real::operator >=(real const &x) const
  481. {
  482. return !(*this < x);
  483. }
  484. template<> bool real::operator !() const
  485. {
  486. return !(bool)*this;
  487. }
  488. template<> real::operator bool() const
  489. {
  490. /* A real is "true" if it is non-zero (exponent is non-zero) AND
  491. * not NaN (exponent is not full bits OR higher order mantissa is zero) */
  492. uint32_t exponent = m_signexp << 1;
  493. return exponent && (~exponent || m_mantissa[0] == 0);
  494. }
  495. template<> real min(real const &a, real const &b)
  496. {
  497. return (a < b) ? a : b;
  498. }
  499. template<> real max(real const &a, real const &b)
  500. {
  501. return (a > b) ? a : b;
  502. }
  503. template<> real clamp(real const &x, real const &a, real const &b)
  504. {
  505. return (x < a) ? a : (x > b) ? b : x;
  506. }
  507. template<> real inverse(real const &x)
  508. {
  509. if (!(x.m_signexp << 1))
  510. {
  511. real ret = x;
  512. ret.m_signexp = x.m_signexp | 0x7fffffffu;
  513. ret.m_mantissa[0] = 0;
  514. return ret;
  515. }
  516. /* Use the system's float inversion to approximate 1/x */
  517. union { float f; uint32_t x; } u = { 1.0f }, v = { 1.0f };
  518. v.x |= x.m_mantissa[0] >> 9;
  519. v.f = 1.0f / v.f;
  520. real ret;
  521. ret.m_mantissa[0] = v.x << 9;
  522. uint32_t sign = x.m_signexp & 0x80000000u;
  523. ret.m_signexp = sign;
  524. int exponent = (x.m_signexp & 0x7fffffffu) + 1;
  525. exponent = -exponent + (v.x >> 23) - (u.x >> 23);
  526. ret.m_signexp |= (exponent - 1) & 0x7fffffffu;
  527. /* FIXME: 1+log2(BIGITS) steps of Newton-Raphson seems to be enough for
  528. * convergence, but this hasn't been checked seriously. */
  529. for (int i = 1; i <= real::BIGITS; i *= 2)
  530. ret = ret * (real::R_2() - ret * x);
  531. return ret;
  532. }
  533. template<> real sqrt(real const &x)
  534. {
  535. /* if zero, return x */
  536. if (!(x.m_signexp << 1))
  537. return x;
  538. /* if negative, return NaN */
  539. if (x.m_signexp >> 31)
  540. {
  541. real ret;
  542. ret.m_signexp = 0x7fffffffu;
  543. ret.m_mantissa[0] = 0xffffu;
  544. return ret;
  545. }
  546. /* Use the system's float inversion to approximate 1/sqrt(x). First
  547. * we construct a float in the [1..4[ range that has roughly the same
  548. * mantissa as our real. Its exponent is 0 or 1, depending on the
  549. * partity of x. The final exponent is 0, -1 or -2. We use the final
  550. * exponent and final mantissa to pre-fill the result. */
  551. union { float f; uint32_t x; } u = { 1.0f }, v = { 2.0f };
  552. v.x -= ((x.m_signexp & 1) << 23);
  553. v.x |= x.m_mantissa[0] >> 9;
  554. v.f = 1.0f / sqrtf(v.f);
  555. real ret;
  556. ret.m_mantissa[0] = v.x << 9;
  557. uint32_t sign = x.m_signexp & 0x80000000u;
  558. ret.m_signexp = sign;
  559. uint32_t exponent = (x.m_signexp & 0x7fffffffu);
  560. exponent = ((1 << 30) + (1 << 29) - 1) - (exponent + 1) / 2;
  561. exponent = exponent + (v.x >> 23) - (u.x >> 23);
  562. ret.m_signexp |= exponent & 0x7fffffffu;
  563. /* FIXME: 1+log2(BIGITS) steps of Newton-Raphson seems to be enough for
  564. * convergence, but this hasn't been checked seriously. */
  565. for (int i = 1; i <= real::BIGITS; i *= 2)
  566. {
  567. ret = ret * (real::R_3() - ret * ret * x);
  568. ret.m_signexp--;
  569. }
  570. return ret * x;
  571. }
  572. template<> real cbrt(real const &x)
  573. {
  574. /* if zero, return x */
  575. if (!(x.m_signexp << 1))
  576. return x;
  577. /* Use the system's float inversion to approximate cbrt(x). First
  578. * we construct a float in the [1..8[ range that has roughly the same
  579. * mantissa as our real. Its exponent is 0, 1 or 2, depending on the
  580. * value of x. The final exponent is 0 or 1 (special case). We use
  581. * the final exponent and final mantissa to pre-fill the result. */
  582. union { float f; uint32_t x; } u = { 1.0f }, v = { 1.0f };
  583. v.x += ((x.m_signexp % 3) << 23);
  584. v.x |= x.m_mantissa[0] >> 9;
  585. v.f = powf(v.f, 0.33333333333333333f);
  586. real ret;
  587. ret.m_mantissa[0] = v.x << 9;
  588. uint32_t sign = x.m_signexp & 0x80000000u;
  589. ret.m_signexp = sign;
  590. int exponent = (x.m_signexp & 0x7fffffffu) - (1 << 30) + 1;
  591. exponent = exponent / 3 + (v.x >> 23) - (u.x >> 23);
  592. ret.m_signexp |= (exponent + (1 << 30) - 1) & 0x7fffffffu;
  593. /* FIXME: 1+log2(BIGITS) steps of Newton-Raphson seems to be enough for
  594. * convergence, but this hasn't been checked seriously. */
  595. for (int i = 1; i <= real::BIGITS; i *= 2)
  596. {
  597. static real third = inverse(real::R_3());
  598. ret = third * (x / (ret * ret) + (ret / 2));
  599. }
  600. return ret;
  601. }
  602. template<> real pow(real const &x, real const &y)
  603. {
  604. if (!y)
  605. return real::R_1();
  606. if (!x)
  607. return real::R_0();
  608. if (x > real::R_0())
  609. return exp(y * log(x));
  610. else /* x < 0 */
  611. {
  612. /* Odd integer exponent */
  613. if (y == (round(y / 2) * 2))
  614. return exp(y * log(-x));
  615. /* Even integer exponent */
  616. if (y == round(y))
  617. return -exp(y * log(-x));
  618. /* FIXME: negative nth root */
  619. return real::R_0();
  620. }
  621. }
  622. static real fast_fact(unsigned int x)
  623. {
  624. real ret = real::R_1();
  625. unsigned int i = 1, multiplier = 1, exponent = 0;
  626. for (;;)
  627. {
  628. if (i++ >= x)
  629. /* Multiplication is a no-op if multiplier == 1 */
  630. return ldexp(ret * multiplier, exponent);
  631. unsigned int tmp = i;
  632. while ((tmp & 1) == 0)
  633. {
  634. tmp >>= 1;
  635. exponent++;
  636. }
  637. if (multiplier * tmp / tmp != multiplier)
  638. {
  639. ret *= multiplier;
  640. multiplier = 1;
  641. }
  642. multiplier *= tmp;
  643. }
  644. }
  645. template<> real gamma(real const &x)
  646. {
  647. /* We use Spouge's formula. FIXME: precision is far from acceptable,
  648. * especially with large values. We need to compute this with higher
  649. * precision values in order to attain the desired accuracy. It might
  650. * also be useful to sort the ck values by decreasing absolute value
  651. * and do the addition in this order. */
  652. int a = (int)ceilf(logf(2) / logf(2 * F_PI)
  653. * real::BIGITS * real::BIGIT_BITS);
  654. real ret = sqrt(real::R_PI() * 2);
  655. real fact_k_1 = real::R_1();
  656. for (int k = 1; k < a; k++)
  657. {
  658. real a_k = (real)(a - k);
  659. real ck = pow(a_k, (real)((float)k - 0.5)) * exp(a_k)
  660. / (fact_k_1 * (x + (real)(k - 1)));
  661. ret += ck;
  662. fact_k_1 *= (real)-k;
  663. }
  664. ret *= pow(x + (real)(a - 1), x - (real::R_1() / 2));
  665. ret *= exp(-x - (real)(a - 1));
  666. return ret;
  667. }
  668. template<> real fabs(real const &x)
  669. {
  670. real ret = x;
  671. ret.m_signexp &= 0x7fffffffu;
  672. return ret;
  673. }
  674. template<> real abs(real const &x)
  675. {
  676. return fabs(x);
  677. }
  678. template<> real fract(real const &x)
  679. {
  680. return x - floor(x);
  681. }
  682. template<> real degrees(real const &x)
  683. {
  684. static real mul = real(180) * real::R_1_PI();
  685. return x * mul;
  686. }
  687. template<> real radians(real const &x)
  688. {
  689. static real mul = real::R_PI() / real(180);
  690. return x * mul;
  691. }
  692. static real fast_log(real const &x)
  693. {
  694. /* This fast log method is tuned to work on the [1..2] range and
  695. * no effort whatsoever was made to improve convergence outside this
  696. * domain of validity. It can converge pretty fast, provided we use
  697. * the following variable substitutions:
  698. * y = sqrt(x)
  699. * z = (y - 1) / (y + 1)
  700. *
  701. * And the following identities:
  702. * ln(x) = 2 ln(y)
  703. * = 2 ln((1 + z) / (1 - z))
  704. * = 4 z (1 + z^2 / 3 + z^4 / 5 + z^6 / 7...)
  705. *
  706. * Any additional sqrt() call would halve the convergence time, but
  707. * would also impact the final precision. For now we stick with one
  708. * sqrt() call. */
  709. real y = sqrt(x);
  710. real z = (y - real::R_1()) / (y + real::R_1()), z2 = z * z, zn = z2;
  711. real sum = real::R_1();
  712. for (int i = 3; ; i += 2)
  713. {
  714. real newsum = sum + zn / (real)i;
  715. if (newsum == sum)
  716. break;
  717. sum = newsum;
  718. zn *= z2;
  719. }
  720. return z * sum * 4;
  721. }
  722. template<> real log(real const &x)
  723. {
  724. /* Strategy for log(x): if x = 2^E*M then log(x) = E log(2) + log(M),
  725. * with the property that M is in [1..2[, so fast_log() applies here. */
  726. real tmp = x;
  727. if (x.m_signexp >> 31 || x.m_signexp == 0)
  728. {
  729. tmp.m_signexp = 0xffffffffu;
  730. tmp.m_mantissa[0] = 0xffffffffu;
  731. return tmp;
  732. }
  733. tmp.m_signexp = (1 << 30) - 1;
  734. return (real)(int)(x.m_signexp - (1 << 30) + 1) * real::R_LN2()
  735. + fast_log(tmp);
  736. }
  737. template<> real log2(real const &x)
  738. {
  739. /* Strategy for log2(x): see log(x). */
  740. real tmp = x;
  741. if (x.m_signexp >> 31 || x.m_signexp == 0)
  742. {
  743. tmp.m_signexp = 0xffffffffu;
  744. tmp.m_mantissa[0] = 0xffffffffu;
  745. return tmp;
  746. }
  747. tmp.m_signexp = (1 << 30) - 1;
  748. return (real)(int)(x.m_signexp - (1 << 30) + 1)
  749. + fast_log(tmp) * real::R_LOG2E();
  750. }
  751. template<> real log10(real const &x)
  752. {
  753. return log(x) * real::R_LOG10E();
  754. }
  755. static real fast_exp_sub(real const &x, real const &y)
  756. {
  757. /* This fast exp method is tuned to work on the [-1..1] range and
  758. * no effort whatsoever was made to improve convergence outside this
  759. * domain of validity. The argument y is used for cases where we
  760. * don't want the leading 1 in the Taylor series. */
  761. real ret = real::R_1() - y, xn = x;
  762. int i = 1;
  763. for (;;)
  764. {
  765. real newret = ret + xn;
  766. if (newret == ret)
  767. break;
  768. ret = newret * ++i;
  769. xn *= x;
  770. }
  771. return ret / fast_fact(i);
  772. }
  773. template<> real exp(real const &x)
  774. {
  775. /* Strategy for exp(x): the Taylor series does not converge very fast
  776. * with large positive or negative values.
  777. *
  778. * However, we know that the result is going to be in the form M*2^E,
  779. * where M is the mantissa and E the exponent. We first try to predict
  780. * a value for E, which is approximately log2(exp(x)) = x / log(2).
  781. *
  782. * Let E0 be an integer close to x / log(2). We need to find a value x0
  783. * such that exp(x) = 2^E0 * exp(x0). We get x0 = x - E0 log(2).
  784. *
  785. * Thus the final algorithm:
  786. * int E0 = x / log(2)
  787. * real x0 = x - E0 log(2)
  788. * real x1 = exp(x0)
  789. * return x1 * 2^E0
  790. */
  791. int e0 = x / real::R_LN2();
  792. real x0 = x - (real)e0 * real::R_LN2();
  793. real x1 = fast_exp_sub(x0, real::R_0());
  794. x1.m_signexp += e0;
  795. return x1;
  796. }
  797. template<> real exp2(real const &x)
  798. {
  799. /* Strategy for exp2(x): see strategy in exp(). */
  800. int e0 = x;
  801. real x0 = x - (real)e0;
  802. real x1 = fast_exp_sub(x0 * real::R_LN2(), real::R_0());
  803. x1.m_signexp += e0;
  804. return x1;
  805. }
  806. template<> real sinh(real const &x)
  807. {
  808. /* We cannot always use (exp(x)-exp(-x))/2 because we'll lose
  809. * accuracy near zero. We only use this identity for |x|>0.5. If
  810. * |x|<=0.5, we compute exp(x)-1 and exp(-x)-1 instead. */
  811. bool near_zero = (fabs(x) < real::R_1() / 2);
  812. real x1 = near_zero ? fast_exp_sub(x, real::R_1()) : exp(x);
  813. real x2 = near_zero ? fast_exp_sub(-x, real::R_1()) : exp(-x);
  814. return (x1 - x2) / 2;
  815. }
  816. template<> real tanh(real const &x)
  817. {
  818. /* See sinh() for the strategy here */
  819. bool near_zero = (fabs(x) < real::R_1() / 2);
  820. real x1 = near_zero ? fast_exp_sub(x, real::R_1()) : exp(x);
  821. real x2 = near_zero ? fast_exp_sub(-x, real::R_1()) : exp(-x);
  822. real x3 = near_zero ? x1 + x2 + real::R_2() : x1 + x2;
  823. return (x1 - x2) / x3;
  824. }
  825. template<> real cosh(real const &x)
  826. {
  827. /* No need to worry about accuracy here; maybe the last bit is slightly
  828. * off, but that's about it. */
  829. return (exp(x) + exp(-x)) / 2;
  830. }
  831. template<> real frexp(real const &x, int *exp)
  832. {
  833. if (!x)
  834. {
  835. *exp = 0;
  836. return x;
  837. }
  838. real ret = x;
  839. int exponent = (ret.m_signexp & 0x7fffffffu) - (1 << 30) + 1;
  840. *exp = exponent + 1;
  841. ret.m_signexp -= exponent + 1;
  842. return ret;
  843. }
  844. template<> real ldexp(real const &x, int exp)
  845. {
  846. real ret = x;
  847. if (ret)
  848. ret.m_signexp += exp;
  849. return ret;
  850. }
  851. template<> real modf(real const &x, real *iptr)
  852. {
  853. real absx = fabs(x);
  854. real tmp = floor(absx);
  855. *iptr = copysign(tmp, x);
  856. return copysign(absx - tmp, x);
  857. }
  858. template<> real ulp(real const &x)
  859. {
  860. real ret = real::R_1();
  861. if (x)
  862. ret.m_signexp = x.m_signexp + 1 - real::BIGITS * real::BIGIT_BITS;
  863. else
  864. ret.m_signexp = 0;
  865. return ret;
  866. }
  867. template<> real nextafter(real const &x, real const &y)
  868. {
  869. if (x == y)
  870. return x;
  871. else if (x < y)
  872. return x + ulp(x);
  873. else
  874. return x - ulp(x);
  875. }
  876. template<> real copysign(real const &x, real const &y)
  877. {
  878. real ret = x;
  879. ret.m_signexp &= 0x7fffffffu;
  880. ret.m_signexp |= y.m_signexp & 0x80000000u;
  881. return ret;
  882. }
  883. template<> real floor(real const &x)
  884. {
  885. /* Strategy for floor(x):
  886. * - if negative, return -ceil(-x)
  887. * - if zero or negative zero, return x
  888. * - if less than one, return zero
  889. * - otherwise, if e is the exponent, clear all bits except the
  890. * first e. */
  891. if (x < -real::R_0())
  892. return -ceil(-x);
  893. if (!x)
  894. return x;
  895. if (x < real::R_1())
  896. return real::R_0();
  897. real ret = x;
  898. int exponent = x.m_signexp - (1 << 30) + 1;
  899. for (int i = 0; i < real::BIGITS; i++)
  900. {
  901. if (exponent <= 0)
  902. ret.m_mantissa[i] = 0;
  903. else if (exponent < real::BIGIT_BITS)
  904. ret.m_mantissa[i] &= ~((1 << (real::BIGIT_BITS - exponent)) - 1);
  905. exponent -= real::BIGIT_BITS;
  906. }
  907. return ret;
  908. }
  909. template<> real ceil(real const &x)
  910. {
  911. /* Strategy for ceil(x):
  912. * - if negative, return -floor(-x)
  913. * - if x == floor(x), return x
  914. * - otherwise, return floor(x) + 1 */
  915. if (x < -real::R_0())
  916. return -floor(-x);
  917. real ret = floor(x);
  918. if (x == ret)
  919. return ret;
  920. else
  921. return ret + real::R_1();
  922. }
  923. template<> real round(real const &x)
  924. {
  925. if (x < real::R_0())
  926. return -round(-x);
  927. return floor(x + (real::R_1() / 2));
  928. }
  929. template<> real fmod(real const &x, real const &y)
  930. {
  931. if (!y)
  932. return real::R_0(); /* FIXME: return NaN */
  933. if (!x)
  934. return x;
  935. real tmp = round(x / y);
  936. return x - tmp * y;
  937. }
  938. template<> real sin(real const &x)
  939. {
  940. int switch_sign = x.m_signexp & 0x80000000u;
  941. real absx = fmod(fabs(x), real::R_PI() * 2);
  942. if (absx > real::R_PI())
  943. {
  944. absx -= real::R_PI();
  945. switch_sign = !switch_sign;
  946. }
  947. if (absx > real::R_PI_2())
  948. absx = real::R_PI() - absx;
  949. real ret = real::R_0(), fact = real::R_1(), xn = absx, mx2 = -absx * absx;
  950. int i = 1;
  951. for (;;)
  952. {
  953. real newret = ret + xn;
  954. if (newret == ret)
  955. break;
  956. ret = newret * ((i + 1) * (i + 2));
  957. xn *= mx2;
  958. i += 2;
  959. }
  960. ret /= fast_fact(i);
  961. /* Propagate sign */
  962. if (switch_sign)
  963. ret.m_signexp ^= 0x80000000u;
  964. return ret;
  965. }
  966. template<> real cos(real const &x)
  967. {
  968. return sin(real::R_PI_2() - x);
  969. }
  970. template<> real tan(real const &x)
  971. {
  972. /* Constrain input to [-π,π] */
  973. real y = fmod(x, real::R_PI());
  974. /* Constrain input to [-π/2,π/2] */
  975. if (y < -real::R_PI_2())
  976. y += real::R_PI();
  977. else if (y > real::R_PI_2())
  978. y -= real::R_PI();
  979. /* In [-π/4,π/4] return sin/cos */
  980. if (fabs(y) <= real::R_PI_4())
  981. return sin(y) / cos(y);
  982. /* Otherwise, return cos/sin */
  983. if (y > real::R_0())
  984. y = real::R_PI_2() - y;
  985. else
  986. y = -real::R_PI_2() - y;
  987. return cos(y) / sin(y);
  988. }
  989. static inline real asinacos(real const &x, int is_asin, int is_negative)
  990. {
  991. /* Strategy for asin(): in [-0.5..0.5], use a Taylor series around
  992. * zero. In [0.5..1], use asin(x) = π/2 - 2*asin(sqrt((1-x)/2)), and
  993. * in [-1..-0.5] just revert the sign.
  994. * Strategy for acos(): use acos(x) = π/2 - asin(x) and try not to
  995. * lose the precision around x=1. */
  996. real absx = fabs(x);
  997. int around_zero = (absx < (real::R_1() / 2));
  998. if (!around_zero)
  999. absx = sqrt((real::R_1() - absx) / 2);
  1000. real ret = absx, xn = absx, x2 = absx * absx, fact1 = 2, fact2 = 1;
  1001. for (int i = 1; ; i++)
  1002. {
  1003. xn *= x2;
  1004. real mul = (real)(2 * i + 1);
  1005. real newret = ret + ldexp(fact1 * xn / (mul * fact2), -2 * i);
  1006. if (newret == ret)
  1007. break;
  1008. ret = newret;
  1009. fact1 *= (real)((2 * i + 1) * (2 * i + 2));
  1010. fact2 *= (real)((i + 1) * (i + 1));
  1011. }
  1012. if (is_negative)
  1013. ret = -ret;
  1014. if (around_zero)
  1015. ret = is_asin ? ret : real::R_PI_2() - ret;
  1016. else
  1017. {
  1018. real adjust = is_negative ? real::R_PI() : real::R_0();
  1019. if (is_asin)
  1020. ret = real::R_PI_2() - adjust - ret * 2;
  1021. else
  1022. ret = adjust + ret * 2;
  1023. }
  1024. return ret;
  1025. }
  1026. template<> real asin(real const &x)
  1027. {
  1028. return asinacos(x, 1, x.m_signexp >> 31);
  1029. }
  1030. template<> real acos(real const &x)
  1031. {
  1032. return asinacos(x, 0, x.m_signexp >> 31);
  1033. }
  1034. template<> real atan(real const &x)
  1035. {
  1036. /* Computing atan(x): we choose a different Taylor series depending on
  1037. * the value of x to help with convergence.
  1038. *
  1039. * If |x| < 0.5 we evaluate atan(y) near 0:
  1040. * atan(y) = y - y^3/3 + y^5/5 - y^7/7 + y^9/9 ...
  1041. *
  1042. * If 0.5 <= |x| < 1.5 we evaluate atan(1+y) near 0:
  1043. * atan(1+y) = π/4 + y/(1*2^1) - y^2/(2*2^1) + y^3/(3*2^2)
  1044. * - y^5/(5*2^3) + y^6/(6*2^3) - y^7/(7*2^4)
  1045. * + y^9/(9*2^5) - y^10/(10*2^5) + y^11/(11*2^6) ...
  1046. *
  1047. * If 1.5 <= |x| < 2 we evaluate atan(sqrt(3)+2y) near 0:
  1048. * atan(sqrt(3)+2y) = π/3 + 1/2 y - sqrt(3)/2 y^2/2
  1049. * + y^3/3 - sqrt(3)/2 y^4/4 + 1/2 y^5/5
  1050. * - 1/2 y^7/7 + sqrt(3)/2 y^8/8
  1051. * - y^9/9 + sqrt(3)/2 y^10/10 - 1/2 y^11/11
  1052. * + 1/2 y^13/13 - sqrt(3)/2 y^14/14
  1053. * + y^15/15 - sqrt(3)/2 y^16/16 + 1/2 y^17/17 ...
  1054. *
  1055. * If |x| >= 2 we evaluate atan(y) near +∞:
  1056. * atan(y) = π/2 - y^-1 + y^-3/3 - y^-5/5 + y^-7/7 - y^-9/9 ...
  1057. */
  1058. real absx = fabs(x);
  1059. if (absx < (real::R_1() / 2))
  1060. {
  1061. real ret = x, xn = x, mx2 = -x * x;
  1062. for (int i = 3; ; i += 2)
  1063. {
  1064. xn *= mx2;
  1065. real newret = ret + xn / (real)i;
  1066. if (newret == ret)
  1067. break;
  1068. ret = newret;
  1069. }
  1070. return ret;
  1071. }
  1072. real ret = 0;
  1073. if (absx < (real::R_3() / 2))
  1074. {
  1075. real y = real::R_1() - absx;
  1076. real yn = y, my2 = -y * y;
  1077. for (int i = 0; ; i += 2)
  1078. {
  1079. real newret = ret + ldexp(yn / (real)(2 * i + 1), -i - 1);
  1080. yn *= y;
  1081. newret += ldexp(yn / (real)(2 * i + 2), -i - 1);
  1082. yn *= y;
  1083. newret += ldexp(yn / (real)(2 * i + 3), -i - 2);
  1084. if (newret == ret)
  1085. break;
  1086. ret = newret;
  1087. yn *= my2;
  1088. }
  1089. ret = real::R_PI_4() - ret;
  1090. }
  1091. else if (absx < real::R_2())
  1092. {
  1093. real y = (absx - real::R_SQRT3()) / 2;
  1094. real yn = y, my2 = -y * y;
  1095. for (int i = 1; ; i += 6)
  1096. {
  1097. real newret = ret + ((yn / (real)i) / 2);
  1098. yn *= y;
  1099. newret -= (real::R_SQRT3() / 2) * yn / (real)(i + 1);
  1100. yn *= y;
  1101. newret += yn / (real)(i + 2);
  1102. yn *= y;
  1103. newret -= (real::R_SQRT3() / 2) * yn / (real)(i + 3);
  1104. yn *= y;
  1105. newret += (yn / (real)(i + 4)) / 2;
  1106. if (newret == ret)
  1107. break;
  1108. ret = newret;
  1109. yn *= my2;
  1110. }
  1111. ret = real::R_PI_3() + ret;
  1112. }
  1113. else
  1114. {
  1115. real y = inverse(absx);
  1116. real yn = y, my2 = -y * y;
  1117. ret = y;
  1118. for (int i = 3; ; i += 2)
  1119. {
  1120. yn *= my2;
  1121. real newret = ret + yn / (real)i;
  1122. if (newret == ret)
  1123. break;
  1124. ret = newret;
  1125. }
  1126. ret = real::R_PI_2() - ret;
  1127. }
  1128. /* Propagate sign */
  1129. ret.m_signexp |= (x.m_signexp & 0x80000000u);
  1130. return ret;
  1131. }
  1132. template<> real atan2(real const &y, real const &x)
  1133. {
  1134. if (!y)
  1135. {
  1136. if ((x.m_signexp >> 31) == 0)
  1137. return y;
  1138. if (y.m_signexp >> 31)
  1139. return -real::R_PI();
  1140. return real::R_PI();
  1141. }
  1142. if (!x)
  1143. {
  1144. if (y.m_signexp >> 31)
  1145. return -real::R_PI();
  1146. return real::R_PI();
  1147. }
  1148. /* FIXME: handle the Inf and NaN cases */
  1149. real z = y / x;
  1150. real ret = atan(z);
  1151. if (x < real::R_0())
  1152. ret += (y > real::R_0()) ? real::R_PI() : -real::R_PI();
  1153. return ret;
  1154. }
  1155. template<> void real::hexprint() const
  1156. {
  1157. std::printf("%08x", m_signexp);
  1158. for (int i = 0; i < BIGITS; i++)
  1159. std::printf(" %08x", m_mantissa[i]);
  1160. }
  1161. template<> void real::sprintf(char *str, int ndigits) const;
  1162. template<> void real::print(int ndigits) const
  1163. {
  1164. char *buf = new char[ndigits + 32 + 10];
  1165. real::sprintf(buf, ndigits);
  1166. std::printf("%s", buf);
  1167. delete[] buf;
  1168. }
  1169. template<> void real::sprintf(char *str, int ndigits) const
  1170. {
  1171. real x = *this;
  1172. if (x.m_signexp >> 31)
  1173. {
  1174. *str++ = '-';
  1175. x = -x;
  1176. }
  1177. if (!x)
  1178. {
  1179. std::strcpy(str, "0.0");
  1180. return;
  1181. }
  1182. /* Normalise x so that mantissa is in [1..9.999] */
  1183. /* FIXME: better use int64_t when the cast is implemented */
  1184. int exponent = ceil(log10(x));
  1185. x /= pow(R_10(), (real)exponent);
  1186. if (x < R_1())
  1187. {
  1188. x *= R_10();
  1189. exponent--;
  1190. }
  1191. /* Print digits */
  1192. for (int i = 0; i < ndigits; i++)
  1193. {
  1194. int digit = (int)floor(x);
  1195. *str++ = '0' + digit;
  1196. if (i == 0)
  1197. *str++ = '.';
  1198. x -= real(digit);
  1199. x *= R_10();
  1200. }
  1201. /* Print exponent information */
  1202. if (exponent)
  1203. str += std::sprintf(str, "e%c%i",
  1204. exponent >= 0 ? '+' : '-', lol::abs(exponent));
  1205. *str++ = '\0';
  1206. }
  1207. static real fast_pi()
  1208. {
  1209. /* Approximate Pi using Machin's formula: 16*atan(1/5)-4*atan(1/239) */
  1210. real ret = 0, x0 = 5, x1 = 239;
  1211. real const m0 = -x0 * x0, m1 = -x1 * x1, r16 = 16, r4 = 4;
  1212. for (int i = 1; ; i += 2)
  1213. {
  1214. real newret = ret + r16 / (x0 * (real)i) - r4 / (x1 * (real)i);
  1215. if (newret == ret)
  1216. break;
  1217. ret = newret;
  1218. x0 *= m0;
  1219. x1 *= m1;
  1220. }
  1221. return ret;
  1222. }
  1223. } /* namespace lol */