|
- //
- // Lol Engine
- //
- // Copyright: (c) 2010-2011 Sam Hocevar <sam@hocevar.net>
- // This program is free software; you can redistribute it and/or
- // modify it under the terms of the Do What The Fuck You Want To
- // Public License, Version 2, as published by Sam Hocevar. See
- // http://www.wtfpl.net/ for more details.
- //
-
- #if defined HAVE_CONFIG_H
- # include "config.h"
- #endif
-
- #if defined HAVE_FASTMATH_H
- # include <fastmath.h>
- #endif
-
- #include "core.h"
-
- using namespace std;
-
- namespace lol
- {
-
- static const double PI_2 = 1.57079632679489661923132;
- static const double PI_4 = 0.785398163397448309615661;
- static const double INV_PI = 0.318309886183790671537768;
- static const double ROOT3 = 1.73205080756887729352745;
-
- static const double ZERO = 0.0;
- static const double ONE = 1.0;
- static const double NEG_ONE = -1.0;
- static const double HALF = 0.5;
- static const double QUARTER = 0.25;
- static const double TWO = 2.0;
- #if defined __GNUC__
- static const double VERY_SMALL_NUMBER = 0x1.0p-128;
- #else
- static const double VERY_SMALL_NUMBER = 3e-39;
- #endif
- static const double TWO_EXP_52 = 4503599627370496.0;
- static const double TWO_EXP_54 = 18014398509481984.0;
-
- /** sin Taylor series coefficients. */
- static const double SC[] =
- {
- -1.6449340668482264364724e-0, // π^2/3!
- +8.1174242528335364363700e-1, // π^4/5!
- -1.9075182412208421369647e-1, // π^6/7!
- +2.6147847817654800504653e-2, // π^8/9!
- -2.3460810354558236375089e-3, // π^10/11!
- +1.4842879303107100368487e-4, // π^12/13!
- -6.9758736616563804745344e-6, // π^14/15!
- +2.5312174041370276513517e-7, // π^16/17!
- };
-
- /* Note: the last value should be -1.3878952462213772114468e-7 (ie.
- * π^18/18!) but we tweak it in order to get the better average precision
- * required for tan() computations when close to π/2+kπ values. */
- static const double CC[] =
- {
- -4.9348022005446793094172e-0, // π^2/2!
- +4.0587121264167682181850e-0, // π^4/4!
- -1.3352627688545894958753e-0, // π^6/6!
- +2.3533063035889320454188e-1, // π^8/8!
- -2.5806891390014060012598e-2, // π^10/10!
- +1.9295743094039230479033e-3, // π^12/12!
- -1.0463810492484570711802e-4, // π^14/14!
- +4.3030695870329470072978e-6, // π^16/16!
- -1.3777e-7,
- };
-
- /* These coefficients use Sloane’s http://oeis.org/A002430 and
- * http://oeis.org/A036279 sequences for the Taylor series of tan().
- * Note: the last value should be 2.12485922978838540352881e5 (ie.
- * 443861162*π^18/1856156927625), but we tweak it in order to get
- * sub 1e-11 average precision in a larger range. */
- static const double TC[] =
- {
- 3.28986813369645287294483e0, // π^2/3
- 1.29878788045336582981920e1, // 2*π^4/15
- 5.18844961612069061254404e1, // 17*π^6/315
- 2.07509320280908496804928e2, // 62*π^8/2835
- 8.30024701695986756361561e2, // 1382*π^10/155925
- 3.32009324029001216460018e3, // 21844*π^12/6081075
- 1.32803704909665483598490e4, // 929569*π^14/638512875
- 5.31214808666037709352112e4, // 6404582*π^16/10854718875
- 2.373e5,
- };
-
- #if defined __CELLOS_LV2__
- static inline double lol_fctid(double x) INLINEATTR;
- static inline double lol_fctidz(double x) INLINEATTR;
- static inline double lol_fcfid(double x) INLINEATTR;
- static inline double lol_frsqrte(double x) INLINEATTR;
- static inline double lol_fsel(double c, double gte, double lt) INLINEATTR;
- static inline double lol_fres(double x) INLINEATTR;
- static inline double lol_fdiv(double a, double b) INLINEATTR;
- #endif
- static inline double lol_fabs(double x) INLINEATTR;
- #if defined __GNUC__
- static inline double lol_round(double x) INLINEATTR;
- static inline double lol_trunc(double x) INLINEATTR;
- #endif
-
- #if defined __CELLOS_LV2__
- static inline double lol_fctid(double x)
- {
- double r;
- #if defined __SNC__
- r = __builtin_fctid(x);
- #else
- __asm__ ("fctid %0, %1"
- : "=f" (r) : "f" (x));
- #endif
- return r;
- }
-
- static double lol_fctidz(double x)
- {
- double r;
- #if defined __SNC__
- r = __builtin_fctidz(x);
- #else
- __asm__ ("fctidz %0, %1"
- : "=f" (r) : "f" (x));
- #endif
- return r;
- }
-
- static double lol_fcfid(double x)
- {
- double r;
- #if defined __SNC__
- r = __builtin_fcfid(x);
- #else
- __asm__ ("fcfid %0, %1"
- : "=f" (r) : "f" (x));
- #endif
- return r;
- }
-
- static double lol_frsqrte(double x)
- {
- #if defined __SNC__
- return __builtin_frsqrte(x);
- #else
- double r;
- __asm__ ("frsqrte %0, %1"
- : "=f" (r) : "f" (x));
- return r;
- #endif
- }
-
- static inline double lol_fsel(double c, double gte, double lt)
- {
- #if defined __CELLOS_LV2__ && defined __SNC__
- return __fsel(c, gte, lt);
- #elif defined __CELLOS_LV2__
- double r;
- __asm__ ("fsel %0, %1, %2, %3"
- : "=f" (r) : "f" (c), "f" (gte), "f" (lt));
- return r;
- #else
- return (c >= 0) ? gte : lt;
- #endif
- }
-
- static inline double lol_fres(double x)
- {
- double ret;
- #if defined __SNC__
- ret = __builtin_fre(x);
- #else
- __asm__ ("fres %0, %1"
- : "=f" (ret) : "f" (x));
- #endif
- return ret;
- }
-
- static inline double lol_fdiv(double a, double b)
- {
- /* Estimate */
- double x0 = lol_fres(b);
-
- /* Two steps of Newton-Raphson */
- x0 = (b * x0 - ONE) * -x0 + x0;
- x0 = (b * x0 - ONE) * -x0 + x0;
-
- return a * x0;
- }
- #endif /* __CELLOS_LV2__ */
-
- static inline double lol_fabs(double x)
- {
- #if defined __CELLOS_LV2__ && defined __SNC__
- return __fabs(x);
- #elif defined __CELLOS_LV2__
- double r;
- __asm__ ("fabs %0, %1"
- : "=f" (r) : "f" (x));
- return r;
- #elif defined __GNUC__
- return __builtin_fabs(x);
- #else
- using std::fabs;
- return fabs(x);
- #endif
- }
-
- #if defined __GNUC__
- static inline double lol_round(double x)
- {
- #if defined __CELLOS_LV2__
- return lol_fcfid(lol_fctid(x));
- #else
- return __builtin_round(x);
- #endif
- }
-
- static inline double lol_trunc(double x)
- {
- #if defined __CELLOS_LV2__
- return lol_fcfid(lol_fctidz(x));
- #else
- return __builtin_trunc(x);
- #endif
- }
- #endif
-
- double lol_sin(double x)
- {
- double absx = lol_fabs(x * INV_PI);
-
- /* If branches are cheap, skip the cycle count when |x| < π/4,
- * and only do the Taylor series up to the required precision. */
- #if defined LOL_FEATURE_CHEAP_BRANCHES
- if (absx < QUARTER)
- {
- /* Computing x^4 is one multiplication too many we do, but it helps
- * interleave the Taylor series operations a lot better. */
- double x2 = absx * absx;
- double x4 = x2 * x2;
- double sub1 = (SC[3] * x4 + SC[1]) * x4 + ONE;
- double sub2 = (SC[4] * x4 + SC[2]) * x4 + SC[0];
- double taylor = sub2 * x2 + sub1;
- return x * taylor;
- }
- #endif
-
- /* Wrap |x| to the range [-1, 1] and keep track of the number of
- * cycles required. If odd, we'll need to change the sign of the
- * result. */
- #if defined __CELLOS_LV2__
- double sign = lol_fsel(x, D_PI, -D_PI);
- double num_cycles = lol_round(absx);
- double is_even = lol_trunc(num_cycles * HALF) - (num_cycles * HALF);
- sign = lol_fsel(is_even, sign, -sign);
- #else
- double num_cycles = absx + TWO_EXP_52;
- FP_USE(num_cycles); num_cycles -= TWO_EXP_52;
-
- double is_even = TWO * num_cycles - ONE;
- FP_USE(is_even); is_even += TWO_EXP_54;
- FP_USE(is_even); is_even -= TWO_EXP_54;
- FP_USE(is_even);
- is_even -= TWO * num_cycles - ONE;
- double sign = is_even;
- #endif
- absx -= num_cycles;
-
- /* If branches are very cheap, we have the option to do the Taylor
- * series at a much lower degree by splitting. */
- #if defined LOL_FEATURE_VERY_CHEAP_BRANCHES
- if (lol_fabs(absx) > QUARTER)
- {
- sign = (x * absx >= 0.0) ? sign : -sign;
-
- double x1 = HALF - lol_fabs(absx);
- double x2 = x1 * x1;
- double x4 = x2 * x2;
- double sub1 = ((CC[5] * x4 + CC[3]) * x4 + CC[1]) * x4 + ONE;
- double sub2 = (CC[4] * x4 + CC[2]) * x4 + CC[0];
- double taylor = sub2 * x2 + sub1;
-
- return taylor * sign;
- }
- #endif
-
- #if !defined __CELLOS_LV2__
- sign *= (x >= 0.0) ? D_PI : -D_PI;
- #endif
-
- /* Compute a Tailor series for sin() and combine sign information. */
- double x2 = absx * absx;
- double x4 = x2 * x2;
- #if defined LOL_FEATURE_VERY_CHEAP_BRANCHES
- double sub1 = (SC[3] * x4 + SC[1]) * x4 + ONE;
- double sub2 = (SC[4] * x4 + SC[2]) * x4 + SC[0];
- #else
- double sub1 = (((SC[7] * x4 + SC[5]) * x4 + SC[3]) * x4 + SC[1]) * x4 + ONE;
- double sub2 = ((SC[6] * x4 + SC[4]) * x4 + SC[2]) * x4 + SC[0];
- #endif
- double taylor = sub2 * x2 + sub1;
-
- return absx * taylor * sign;
- }
-
- double lol_cos(double x)
- {
- double absx = lol_fabs(x * INV_PI);
-
- #if defined LOL_FEATURE_CHEAP_BRANCHES
- if (absx < QUARTER)
- {
- double x2 = absx * absx;
- double x4 = x2 * x2;
- double sub1 = (CC[5] * x4 + CC[3]) * x4 + CC[1];
- double sub2 = (CC[4] * x4 + CC[2]) * x4 + CC[0];
- double taylor = (sub1 * x2 + sub2) * x2 + ONE;
- return taylor;
- }
- #endif
-
- #if defined __CELLOS_LV2__
- double num_cycles = lol_round(absx);
- double is_even = lol_trunc(num_cycles * HALF) - (num_cycles * HALF);
- double sign = lol_fsel(is_even, ONE, NEG_ONE);
- #else
- double num_cycles = absx + TWO_EXP_52;
- FP_USE(num_cycles); num_cycles -= TWO_EXP_52;
-
- double is_even = TWO * num_cycles - ONE;
- FP_USE(is_even); is_even += TWO_EXP_54;
- FP_USE(is_even); is_even -= TWO_EXP_54;
- FP_USE(is_even);
- is_even -= TWO * num_cycles - ONE;
- double sign = is_even;
- #endif
- absx -= num_cycles;
-
- #if defined LOL_FEATURE_VERY_CHEAP_BRANCHES
- if (lol_fabs(absx) > QUARTER)
- {
- double x1 = HALF - lol_fabs(absx);
- double x2 = x1 * x1;
- double x4 = x2 * x2;
- double sub1 = (SC[3] * x4 + SC[1]) * x4 + ONE;
- double sub2 = (SC[4] * x4 + SC[2]) * x4 + SC[0];
- double taylor = sub2 * x2 + sub1;
-
- return x1 * taylor * sign * D_PI;
- }
- #endif
-
- double x2 = absx * absx;
- double x4 = x2 * x2;
- #if defined LOL_FEATURE_VERY_CHEAP_BRANCHES
- double sub1 = ((CC[5] * x4 + CC[3]) * x4 + CC[1]) * x4 + ONE;
- double sub2 = (CC[4] * x4 + CC[2]) * x4 + CC[0];
- #else
- double sub1 = (((CC[7] * x4 + CC[5]) * x4 + CC[3]) * x4 + CC[1]) * x4 + ONE;
- double sub2 = ((CC[6] * x4 + CC[4]) * x4 + CC[2]) * x4 + CC[0];
- #endif
- double taylor = sub2 * x2 + sub1;
-
- return taylor * sign;
- }
-
- void lol_sincos(double x, double *sinx, double *cosx)
- {
- double absx = lol_fabs(x * INV_PI);
-
- #if defined LOL_FEATURE_CHEAP_BRANCHES
- if (absx < QUARTER)
- {
- double x2 = absx * absx;
- double x4 = x2 * x2;
-
- /* Computing the Taylor series to the 11th order is enough to get
- * x * 1e-11 precision, but we push it to the 13th order so that
- * tan() has a better precision. */
- double subs1 = ((SC[5] * x4 + SC[3]) * x4 + SC[1]) * x4 + ONE;
- double subs2 = (SC[4] * x4 + SC[2]) * x4 + SC[0];
- double taylors = subs2 * x2 + subs1;
- *sinx = x * taylors;
-
- double subc1 = (CC[5] * x4 + CC[3]) * x4 + CC[1];
- double subc2 = (CC[4] * x4 + CC[2]) * x4 + CC[0];
- double taylorc = (subc1 * x2 + subc2) * x2 + ONE;
- *cosx = taylorc;
-
- return;
- }
- #endif
-
- #if defined __CELLOS_LV2__
- double num_cycles = lol_round(absx);
- double is_even = lol_trunc(num_cycles * HALF) - (num_cycles * HALF);
-
- double sin_sign = lol_fsel(x, D_PI, -D_PI);
- sin_sign = lol_fsel(is_even, sin_sign, -sin_sign);
- double cos_sign = lol_fsel(is_even, ONE, NEG_ONE);
- #else
- double num_cycles = absx + TWO_EXP_52;
- FP_USE(num_cycles); num_cycles -= TWO_EXP_52;
-
- double is_even = TWO * num_cycles - ONE;
- FP_USE(is_even); is_even += TWO_EXP_54;
- FP_USE(is_even); is_even -= TWO_EXP_54;
- FP_USE(is_even);
- is_even -= TWO * num_cycles - ONE;
- double sin_sign = is_even;
- double cos_sign = is_even;
- #endif
- absx -= num_cycles;
-
- #if defined LOL_FEATURE_VERY_CHEAP_BRANCHES
- if (lol_fabs(absx) > QUARTER)
- {
- cos_sign = sin_sign;
- sin_sign = (x * absx >= 0.0) ? sin_sign : -sin_sign;
-
- double x1 = HALF - lol_fabs(absx);
- double x2 = x1 * x1;
- double x4 = x2 * x2;
-
- double subs1 = ((CC[5] * x4 + CC[3]) * x4 + CC[1]) * x4 + ONE;
- double subs2 = (CC[4] * x4 + CC[2]) * x4 + CC[0];
- double taylors = subs2 * x2 + subs1;
- *sinx = taylors * sin_sign;
-
- double subc1 = ((SC[5] * x4 + SC[3]) * x4 + SC[1]) * x4 + ONE;
- double subc2 = (SC[4] * x4 + SC[2]) * x4 + SC[0];
- double taylorc = subc2 * x2 + subc1;
- *cosx = x1 * taylorc * cos_sign * D_PI;
-
- return;
- }
- #endif
-
- #if !defined __CELLOS_LV2__
- sin_sign *= (x >= 0.0) ? D_PI : -D_PI;
- #endif
-
- double x2 = absx * absx;
- double x4 = x2 * x2;
- #if defined LOL_FEATURE_VERY_CHEAP_BRANCHES
- double subs1 = ((SC[5] * x4 + SC[3]) * x4 + SC[1]) * x4 + ONE;
- double subs2 = (SC[4] * x4 + SC[2]) * x4 + SC[0];
- double subc1 = ((CC[5] * x4 + CC[3]) * x4 + CC[1]) * x4 + ONE;
- double subc2 = (CC[4] * x4 + CC[2]) * x4 + CC[0];
- #else
- double subs1 = (((SC[7] * x4 + SC[5]) * x4 + SC[3]) * x4 + SC[1]) * x4 + ONE;
- double subs2 = ((SC[6] * x4 + SC[4]) * x4 + SC[2]) * x4 + SC[0];
- /* Push Taylor series to the 19th order to enhance tan() accuracy. */
- double subc1 = (((CC[7] * x4 + CC[5]) * x4 + CC[3]) * x4 + CC[1]) * x4 + ONE;
- double subc2 = (((CC[8] * x4 + CC[6]) * x4 + CC[4]) * x4 + CC[2]) * x4 + CC[0];
- #endif
- double taylors = subs2 * x2 + subs1;
- *sinx = absx * taylors * sin_sign;
-
- double taylorc = subc2 * x2 + subc1;
- *cosx = taylorc * cos_sign;
- }
-
- void lol_sincos(float x, float *sinx, float *cosx)
- {
- double x2 = static_cast<double>(x);
- double s2, c2;
- lol_sincos(x2, &s2, &c2);
- *sinx = static_cast<float>(s2);
- *cosx = static_cast<float>(c2);
- }
-
- double lol_tan(double x)
- {
- #if defined LOL_FEATURE_CHEAP_BRANCHES
- double absx = lol_fabs(x * INV_PI);
-
- /* This value was determined empirically to ensure an error of no
- * more than x * 1e-11 in this range. */
- if (absx < 0.163)
- {
- double x2 = absx * absx;
- double x4 = x2 * x2;
- double sub1 = (((TC[7] * x4 + TC[5]) * x4
- + TC[3]) * x4 + TC[1]) * x4 + ONE;
- double sub2 = (((TC[8] * x4 + TC[6]) * x4
- + TC[4]) * x4 + TC[2]) * x4 + TC[0];
- double taylor = sub2 * x2 + sub1;
- return x * taylor;
- }
- #endif
-
- double sinx, cosx;
- lol_sincos(x, &sinx, &cosx);
-
- /* Ensure cosx isn't zero. FIXME: we lose the cosx sign here. */
- double absc = lol_fabs(cosx);
- #if defined __CELLOS_LV2__
- double is_cos_not_zero = absc - VERY_SMALL_NUMBER;
- cosx = lol_fsel(is_cos_not_zero, cosx, VERY_SMALL_NUMBER);
- return lol_fdiv(sinx, cosx);
- #else
- if (__unlikely(absc < VERY_SMALL_NUMBER))
- cosx = VERY_SMALL_NUMBER;
- return sinx / cosx;
- #endif
- }
-
- } /* namespace lol */
|