|
- //
- // LolRemez - Remez algorithm implementation
- //
- // Copyright: (c) 2005-2013 Sam Hocevar <sam@hocevar.net>
- // This program is free software; you can redistribute it and/or
- // modify it under the terms of the Do What The Fuck You Want To
- // Public License, Version 2, as published by Sam Hocevar. See
- // http://www.wtfpl.net/ for more details.
- //
-
- #if defined HAVE_CONFIG_H
- # include "config.h"
- #endif
-
- #include <lol/main.h>
-
- #include <lol/math/real.h>
-
- #include "matrix.h"
- #include "solver.h"
-
- using lol::real;
-
- RemezSolver::RemezSolver(int order, int decimals)
- : m_order(order),
- m_decimals(decimals)
- {
- }
-
- void RemezSolver::Run(real a, real b,
- RemezSolver::RealFunc *func,
- RemezSolver::RealFunc *weight)
- {
- using std::printf;
-
- m_func = func;
- m_weight = weight;
- m_k1 = (b + a) / 2;
- m_k2 = (b - a) / 2;
- m_invk2 = re(m_k2);
- m_invk1 = -m_k1 * m_invk2;
- m_epsilon = pow((real)10, (real)-(m_decimals + 2));
-
- Init();
-
- PrintPoly();
-
- real error = -1;
-
- for (int n = 0; ; n++)
- {
- real newerror = FindExtrema();
- printf("Step %i error: ", n);
- newerror.print(m_decimals);
- printf("\n");
-
- Step();
-
- if (error >= (real)0 && fabs(newerror - error) < error * m_epsilon)
- break;
- error = newerror;
-
- PrintPoly();
-
- FindZeroes();
- }
-
- PrintPoly();
- }
-
- real RemezSolver::EvalCheby(real const &x)
- {
- real ret = 0.0, xn = 1.0;
-
- for (int i = 0; i < m_order + 1; i++)
- {
- real mul = 0;
- for (int j = 0; j < m_order + 1; j++)
- mul += m_coeff[j] * (real)Cheby(j, i);
- ret += mul * xn;
- xn *= x;
- }
-
- return ret;
- }
-
- void RemezSolver::Init()
- {
- /* m_order + 1 Chebyshev coefficients, plus 1 error value */
- m_coeff.Resize(m_order + 2);
-
- /* m_order + 1 zeroes of the error function */
- m_zeroes.Resize(m_order + 1);
-
- /* m_order + 2 control points */
- m_control.Resize(m_order + 2);
-
- /* Pick up x_i where error will be 0 and compute f(x_i) */
- array<real> fxn;
- for (int i = 0; i < m_order + 1; i++)
- {
- m_zeroes[i] = (real)(2 * i - m_order) / (real)(m_order + 1);
- fxn.Push(EvalFunc(m_zeroes[i]));
- }
-
- /* We build a matrix of Chebishev evaluations: row i contains the
- * evaluations of x_i for polynomial order n = 0, 1, ... */
- Matrix<real> mat(m_order + 1, m_order + 1);
- for (int i = 0; i < m_order + 1; i++)
- {
- /* Compute the powers of x_i */
- array<real> powers;
- powers.Push(real(1.0));
- for (int n = 1; n < m_order + 1; n++)
- powers.Push(powers.Last() * m_zeroes[i]);
-
- /* Compute the Chebishev evaluations at x_i */
- for (int n = 0; n < m_order + 1; n++)
- {
- real sum = 0.0;
- for (int k = 0; k < m_order + 1; k++)
- sum += (real)Cheby(n, k) * powers[k];
- mat.m(i, n) = sum;
- }
- }
-
- /* Solve the system */
- mat = mat.inv();
-
- /* Compute interpolation coefficients */
- for (int j = 0; j < m_order + 1; j++)
- {
- m_coeff[j] = 0;
- for (int i = 0; i < m_order + 1; i++)
- m_coeff[j] += mat.m(j, i) * fxn[i];
- }
- }
-
- void RemezSolver::FindZeroes()
- {
- /* Find m_order + 1 zeroes of the error function. No need to
- * compute the relative error: its zeroes are at the same
- * place as the absolute error! */
- for (int i = 0; i < m_order + 1; i++)
- {
- struct { real value, error; } left, right, mid;
-
- left.value = m_control[i];
- left.error = EvalCheby(left.value) - EvalFunc(left.value);
- right.value = m_control[i + 1];
- right.error = EvalCheby(right.value) - EvalFunc(right.value);
-
- static real limit = ldexp((real)1, -500);
- static real zero = (real)0;
- while (fabs(left.value - right.value) > limit)
- {
- mid.value = (left.value + right.value) / 2;
- mid.error = EvalCheby(mid.value) - EvalFunc(mid.value);
-
- if ((left.error <= zero && mid.error <= zero)
- || (left.error >= zero && mid.error >= zero))
- left = mid;
- else
- right = mid;
- }
-
- m_zeroes[i] = mid.value;
- }
- }
-
- real RemezSolver::FindExtrema()
- {
- using std::printf;
-
- /* Find m_order + 2 extrema of the error function. We need to
- * compute the relative error, since its extrema are at slightly
- * different locations than the absolute error’s. */
- real final = 0;
-
- for (int i = 0; i < m_order + 2; i++)
- {
- real a = -1, b = 1;
- if (i > 0)
- a = m_zeroes[i - 1];
- if (i < m_order + 1)
- b = m_zeroes[i];
-
- for (int round = 0; ; round++)
- {
- real maxerror = 0, maxweight = 0;
- int best = -1;
-
- real c = a, delta = (b - a) / 4;
- for (int k = 0; k <= 4; k++)
- {
- if (round == 0 || (k & 1))
- {
- real error = fabs(EvalCheby(c) - EvalFunc(c));
- real weight = fabs(Weight(c));
- /* if error/weight >= maxerror/maxweight */
- if (error * maxweight >= maxerror * weight)
- {
- maxerror = error;
- maxweight = weight;
- best = k;
- }
- }
- c += delta;
- }
-
- switch (best)
- {
- case 0:
- b = a + delta * 2;
- break;
- case 4:
- a = b - delta * 2;
- break;
- default:
- b = a + delta * (best + 1);
- a = a + delta * (best - 1);
- break;
- }
-
- if (delta < m_epsilon)
- {
- real e = fabs(maxerror / maxweight);
- if (e > final)
- final = e;
- m_control[i] = (a + b) / 2;
- break;
- }
- }
- }
-
- return final;
- }
-
- void RemezSolver::Step()
- {
- /* Pick up x_i where error will be 0 and compute f(x_i) */
- array<real> fxn;
- for (int i = 0; i < m_order + 2; i++)
- fxn.Push(EvalFunc(m_control[i]));
-
- /* We build a matrix of Chebishev evaluations: row i contains the
- * evaluations of x_i for polynomial order n = 0, 1, ... */
- Matrix<real> mat(m_order + 2, m_order + 2);
- for (int i = 0; i < m_order + 2; i++)
- {
- /* Compute the powers of x_i */
- array<real> powers;
- powers.Push(real(1.0));
- for (int n = 1; n < m_order + 1; n++)
- powers.Push(powers.Last() * m_control[i]);
-
- /* Compute the Chebishev evaluations at x_i */
- for (int n = 0; n < m_order + 1; n++)
- {
- real sum = 0.0;
- for (int k = 0; k < m_order + 1; k++)
- sum += (real)Cheby(n, k) * powers[k];
- mat.m(i, n) = sum;
- }
- if (i & 1)
- mat.m(i, m_order + 1) = fabs(Weight(m_control[i]));
- else
- mat.m(i, m_order + 1) = -fabs(Weight(m_control[i]));
- }
-
- /* Solve the system */
- mat = mat.inv();
-
- /* Compute interpolation coefficients */
- for (int j = 0; j < m_order + 1; j++)
- {
- m_coeff[j] = 0;
- for (int i = 0; i < m_order + 2; i++)
- m_coeff[j] += mat.m(j, i) * fxn[i];
- }
-
- /* Compute the error */
- real error = 0;
- for (int i = 0; i < m_order + 2; i++)
- error += mat.m(m_order + 1, i) * fxn[i];
- }
-
- int RemezSolver::Cheby(int n, int k)
- {
- if (k > n || k < 0)
- return 0;
- if (n <= 1)
- return (n ^ k ^ 1) & 1;
- return 2 * Cheby(n - 1, k - 1) - Cheby(n - 2, k);
- }
-
- int RemezSolver::Comb(int n, int k)
- {
- if (k == 0 || k == n)
- return 1;
- return Comb(n - 1, k - 1) + Comb(n - 1, k);
- }
-
- void RemezSolver::PrintPoly()
- {
- using std::printf;
-
- /* Transform Chebyshev polynomial weights into powers of X^i
- * in the [-1..1] range. */
- array<real> bn;
-
- for (int i = 0; i < m_order + 1; i++)
- {
- real tmp = 0;
- for (int j = 0; j < m_order + 1; j++)
- tmp += m_coeff[j] * (real)Cheby(j, i);
- bn.Push(tmp);
- }
-
- /* Transform a polynomial in the [-1..1] range into a polynomial
- * in the [a..b] range. */
- array<real> k1p, k2p, an;
-
- for (int i = 0; i < m_order + 1; i++)
- {
- k1p.Push(i ? k1p[i - 1] * m_invk1 : (real)1);
- k2p.Push(i ? k2p[i - 1] * m_invk2 : (real)1);
- }
-
- for (int i = 0; i < m_order + 1; i++)
- {
- real tmp = 0;
- for (int j = i; j < m_order + 1; j++)
- tmp += (real)Comb(j, i) * k1p[j - i] * bn[j];
- an.Push(tmp * k2p[i]);
- }
-
- printf("Polynomial estimate: ");
- for (int j = 0; j < m_order + 1; j++)
- {
- if (j)
- printf(" + x**%i * ", j);
- an[j].print(m_decimals);
- }
- printf("\n\n");
- }
-
- real RemezSolver::EvalFunc(real const &x)
- {
- return m_func(x * m_k2 + m_k1);
- }
-
- real RemezSolver::Weight(real const &x)
- {
- if (m_weight)
- return m_weight(x * m_k2 + m_k1);
- return 1;
- }
|