|
- //
- // Lol Engine - Sample math program: Chebyshev polynomials
- //
- // Copyright: (c) 2005-2011 Sam Hocevar <sam@hocevar.net>
- // This program is free software; you can redistribute it and/or
- // modify it under the terms of the Do What The Fuck You Want To
- // Public License, Version 2, as published by Sam Hocevar. See
- // http://sam.zoy.org/projects/COPYING.WTFPL for more details.
- //
-
- #if !defined __REMEZ_SOLVER_H__
- #define __REMEZ_SOLVER_H__
-
- template<int ORDER> class RemezSolver
- {
- public:
- typedef real RealFunc(real const &x);
-
- RemezSolver()
- {
- }
-
- void Run(real a, real b, RealFunc *func, RealFunc *weight, int steps)
- {
- m_func = func;
- m_weight = weight;
- m_k1 = (b + a) >> 1;
- m_k2 = (b - a) >> 1;
- m_invk2 = re(m_k2);
- m_invk1 = -m_k1 * m_invk2;
-
- Init();
-
- PrintPoly();
-
- for (int n = 0; n < steps; n++)
- {
- FindExtrema();
- Step();
-
- PrintPoly();
-
- FindZeroes();
- }
-
- FindExtrema();
- Step();
-
- PrintPoly();
- }
-
- real ChebyEval(real const &x)
- {
- real ret = 0.0, xn = 1.0;
-
- for (int i = 0; i < ORDER + 1; i++)
- {
- real mul = 0;
- for (int j = 0; j < ORDER + 1; j++)
- mul += coeff[j] * (real)Cheby(j, i);
- ret += mul * xn;
- xn *= x;
- }
-
- return ret;
- }
-
- void Init()
- {
- /* Pick up x_i where error will be 0 and compute f(x_i) */
- real fxn[ORDER + 1];
- for (int i = 0; i < ORDER + 1; i++)
- {
- zeroes[i] = (real)(2 * i - ORDER) / (real)(ORDER + 1);
- fxn[i] = Value(zeroes[i]);
- }
-
- /* We build a matrix of Chebishev evaluations: row i contains the
- * evaluations of x_i for polynomial order n = 0, 1, ... */
- Matrix<ORDER + 1> mat;
- for (int i = 0; i < ORDER + 1; i++)
- {
- /* Compute the powers of x_i */
- real powers[ORDER + 1];
- powers[0] = 1.0;
- for (int n = 1; n < ORDER + 1; n++)
- powers[n] = powers[n - 1] * zeroes[i];
-
- /* Compute the Chebishev evaluations at x_i */
- for (int n = 0; n < ORDER + 1; n++)
- {
- real sum = 0.0;
- for (int k = 0; k < ORDER + 1; k++)
- sum += (real)Cheby(n, k) * powers[k];
- mat.m[i][n] = sum;
- }
- }
-
- /* Solve the system */
- mat = mat.inv();
-
- /* Compute interpolation coefficients */
- for (int j = 0; j < ORDER + 1; j++)
- {
- coeff[j] = 0;
- for (int i = 0; i < ORDER + 1; i++)
- coeff[j] += mat.m[j][i] * fxn[i];
- }
- }
-
- void FindZeroes()
- {
- /* Find ORDER + 1 zeroes of the error function. No need to
- * compute the relative error: its zeroes are at the same
- * place as the absolute error! */
- for (int i = 0; i < ORDER + 1; i++)
- {
- struct { real value, error; } left, right, mid;
-
- left.value = control[i];
- left.error = ChebyEval(left.value) - Value(left.value);
- right.value = control[i + 1];
- right.error = ChebyEval(right.value) - Value(right.value);
-
- static real limit = real::R_1 >> 500;
- while (fabs(left.value - right.value) > limit)
- {
- mid.value = (left.value + right.value) >> 1;
- mid.error = ChebyEval(mid.value) - Value(mid.value);
-
- if ((left.error < real::R_0 && mid.error < real::R_0)
- || (left.error > real::R_0 && mid.error > real::R_0))
- left = mid;
- else
- right = mid;
- }
-
- zeroes[i] = mid.value;
- }
- }
-
- void FindExtrema()
- {
- /* Find ORDER + 2 extrema of the error function. We need to
- * compute the relative error, since its extrema are at slightly
- * different locations than the absolute error’s. */
- real final = 0;
-
- for (int i = 0; i < ORDER + 2; i++)
- {
- real a = -1, b = 1;
- if (i > 0)
- a = zeroes[i - 1];
- if (i < ORDER + 1)
- b = zeroes[i];
-
- for (;;)
- {
- real c = a, delta = (b - a) >> 3;
- real maxerror = 0;
- real maxweight = 0;
- int best = -1;
- for (int k = 1; k <= 7; k++)
- {
- real error = ChebyEval(c) - Value(c);
- real weight = Weight(c);
- if (fabs(error * maxweight) >= fabs(maxerror * weight))
- {
- maxerror = error;
- maxweight = weight;
- best = k;
- }
- c += delta;
- }
-
- b = a + (real)(best + 1) * delta;
- a = a + (real)(best - 1) * delta;
-
- if (b - a < (real)1e-18)
- {
- real e = maxerror / maxweight;
- if (e > final)
- final = e;
- control[i] = (a + b) >> 1;
- break;
- }
- }
- }
-
- printf("Final error: ");
- final.print(40);
- }
-
- void Step()
- {
- /* Pick up x_i where error will be 0 and compute f(x_i) */
- real fxn[ORDER + 2];
- for (int i = 0; i < ORDER + 2; i++)
- fxn[i] = Value(control[i]);
-
- /* We build a matrix of Chebishev evaluations: row i contains the
- * evaluations of x_i for polynomial order n = 0, 1, ... */
- Matrix<ORDER + 2> mat;
- for (int i = 0; i < ORDER + 2; i++)
- {
- /* Compute the powers of x_i */
- real powers[ORDER + 1];
- powers[0] = 1.0;
- for (int n = 1; n < ORDER + 1; n++)
- powers[n] = powers[n - 1] * control[i];
-
- /* Compute the Chebishev evaluations at x_i */
- for (int n = 0; n < ORDER + 1; n++)
- {
- real sum = 0.0;
- for (int k = 0; k < ORDER + 1; k++)
- sum += (real)Cheby(n, k) * powers[k];
- mat.m[i][n] = sum;
- }
- if (i & 1)
- mat.m[i][ORDER + 1] = fabs(Weight(control[i]));
- else
- mat.m[i][ORDER + 1] = -fabs(Weight(control[i]));
- }
-
- /* Solve the system */
- mat = mat.inv();
-
- /* Compute interpolation coefficients */
- for (int j = 0; j < ORDER + 1; j++)
- {
- coeff[j] = 0;
- for (int i = 0; i < ORDER + 2; i++)
- coeff[j] += mat.m[j][i] * fxn[i];
- }
-
- /* Compute the error */
- real error = 0;
- for (int i = 0; i < ORDER + 2; i++)
- error += mat.m[ORDER + 1][i] * fxn[i];
- }
-
- int Cheby(int n, int k)
- {
- if (k > n || k < 0)
- return 0;
- if (n <= 1)
- return (n ^ k ^ 1) & 1;
- return 2 * Cheby(n - 1, k - 1) - Cheby(n - 2, k);
- }
-
- int Comb(int n, int k)
- {
- if (k == 0 || k == n)
- return 1;
- return Comb(n - 1, k - 1) + Comb(n - 1, k);
- }
-
- void PrintPoly()
- {
- using std::printf;
-
- /* Transform Chebyshev polynomial weights into powers of X^i
- * in the [-1..1] range. */
- real bn[ORDER + 1];
-
- for (int i = 0; i < ORDER + 1; i++)
- {
- bn[i] = 0;
- for (int j = 0; j < ORDER + 1; j++)
- bn[i] += coeff[j] * (real)Cheby(j, i);
- }
-
- /* Transform a polynomial in the [-1..1] range into a polynomial
- * in the [a..b] range. */
- real k1p[ORDER + 1], k2p[ORDER + 1];
- real an[ORDER + 1];
-
- for (int i = 0; i < ORDER + 1; i++)
- {
- k1p[i] = i ? k1p[i - 1] * m_invk1 : real::R_1;
- k2p[i] = i ? k2p[i - 1] * m_invk2 : real::R_1;
- }
-
- for (int i = 0; i < ORDER + 1; i++)
- {
- an[i] = 0;
- for (int j = i; j < ORDER + 1; j++)
- an[i] += (real)Comb(j, i) * k1p[j - i] * bn[j];
- an[i] *= k2p[i];
- }
-
- printf("Polynomial estimate:\n");
- for (int j = 0; j < ORDER + 1; j++)
- {
- if (j)
- printf("+");
- printf("x^%i*", j);
- an[j].print(40);
- }
- printf("\n");
- }
-
- real Value(real const &x)
- {
- return m_func(x * m_k2 + m_k1);
- }
-
- real Weight(real const &x)
- {
- return m_weight(x * m_k2 + m_k1);
- }
-
- /* ORDER + 1 Chebyshev coefficients and 1 error value */
- real coeff[ORDER + 2];
- /* ORDER + 1 zeroes of the error function */
- real zeroes[ORDER + 1];
- /* ORDER + 2 control points */
- real control[ORDER + 2];
-
- private:
- RealFunc *m_func, *m_weight;
- real m_k1, m_k2, m_invk1, m_invk2;
- };
-
- #endif /* __REMEZ_SOLVER_H__ */
|