Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.
 
 
 

318 rindas
8.6 KiB

  1. //
  2. // BtPhysTest
  3. //
  4. // Copyright: (c) 2009-2012 Benjamin Huet <huet.benjamin@gmail.com>
  5. // (c) 2012 Sam Hocevar <sam@hocevar.net>
  6. //
  7. #if defined HAVE_CONFIG_H
  8. # include "config.h"
  9. #endif
  10. #if defined _WIN32
  11. # include <direct.h>
  12. #endif
  13. #if defined _XBOX
  14. # define _USE_MATH_DEFINES /* for M_PI */
  15. # include <xtl.h>
  16. # undef near /* Fuck Microsoft */
  17. # undef far /* Fuck Microsoft again */
  18. #elif defined _WIN32
  19. # define _USE_MATH_DEFINES /* for M_PI */
  20. # define WIN32_LEAN_AND_MEAN
  21. # include <windows.h>
  22. # undef near /* Fuck Microsoft */
  23. # undef far /* Fuck Microsoft again */
  24. #else
  25. # include <cmath>
  26. #endif
  27. #if USE_SDL && defined __APPLE__
  28. # include <SDL_main.h>
  29. #endif
  30. #include <bullet/btBulletDynamicsCommon.h>
  31. #include <bullet/btBulletCollisionCommon.h>
  32. #include "core.h"
  33. #include "loldebug.h"
  34. using namespace lol;
  35. #include "BtPhysTest.h"
  36. #define CUBE_HALF_EXTENTS .5f
  37. #define EXTRA_HEIGHT 1.f
  38. int gNumObjects = 8;
  39. BtPhysTest::BtPhysTest(bool editor)
  40. {
  41. /* Create a camera that matches the settings of XNA BtPhysTest */
  42. m_camera = new Camera(vec3(0.f, 600.f, 0.f),
  43. vec3(0.f, 0.f, 0.f),
  44. vec3(0, 0, -1));
  45. m_camera->SetRotation(quat::fromeuler_yxz(0.f, -30.f, 0.f));
  46. m_camera->SetPerspective(90.f, 1280.f, 960.f, .1f, 1000.f);
  47. //m_camera->SetOrtho(1280.f / 6, 960.f / 6, -1000.f, 1000.f);
  48. Ticker::Ref(m_camera);
  49. m_ready = false;
  50. //init Physics
  51. {
  52. m_bt_ccd_mode = USE_CCD;
  53. //collision configuration contains default setup for memory, collision setup
  54. m_bt_collision_config = new btDefaultCollisionConfiguration();
  55. //use the default collision dispatcher. For parallel processing you can use a diffent dispatcher (see Extras/BulletMultiThreaded)
  56. m_bt_dispatcher = new btCollisionDispatcher(m_bt_collision_config);
  57. m_bt_dispatcher->registerCollisionCreateFunc(BOX_SHAPE_PROXYTYPE,BOX_SHAPE_PROXYTYPE,m_bt_collision_config->getCollisionAlgorithmCreateFunc(CONVEX_SHAPE_PROXYTYPE,CONVEX_SHAPE_PROXYTYPE));
  58. m_bt_broadphase = new btDbvtBroadphase();
  59. ///the default constraint solver. For parallel processing you can use a different solver (see Extras/BulletMultiThreaded)
  60. m_bt_solver = new btSequentialImpulseConstraintSolver;
  61. m_bt_world = new btDiscreteDynamicsWorld(m_bt_dispatcher, m_bt_broadphase, m_bt_solver, m_bt_collision_config);
  62. //m_bt_world->setDebugDrawer(&sDebugDrawer);
  63. m_bt_world->getSolverInfo().m_splitImpulse = true;
  64. m_bt_world->getSolverInfo().m_numIterations = 20;
  65. m_bt_world->getDispatchInfo().m_useContinuous = (m_bt_ccd_mode == USE_CCD);
  66. m_bt_world->setGravity(btVector3(0,-10,0));
  67. ///create a few basic rigid bodies
  68. btBoxShape* box = new btBoxShape(btVector3(btScalar(110.),btScalar(1.),btScalar(110.)));
  69. btCollisionShape* groundShape = box;
  70. m_bt_collision_shapes << groundShape;
  71. m_ground_mesh.Compile("[sc#ddd afcb110 1 110 -1]");
  72. m_rigid_mesh.Compile("[sc#ada afcb1 1 1 -.1]");
  73. //m_bt_collision_shapes << new btCylinderShape(btVector3(.5f,.5f,.5f));
  74. btTransform groundTransform;
  75. groundTransform.setIdentity();
  76. //We can also use DemoApplication::localCreateRigidBody, but for clarity it is provided here:
  77. {
  78. btScalar mass(0.);
  79. //rigidbody is dynamic if and only if mass is non zero, otherwise static
  80. bool isDynamic = (mass != 0.f);
  81. btVector3 localInertia(0,0,0);
  82. if (isDynamic)
  83. groundShape->calculateLocalInertia(mass,localInertia);
  84. //using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
  85. btDefaultMotionState* myMotionState = new btDefaultMotionState(groundTransform);
  86. btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,myMotionState,groundShape,localInertia);
  87. btRigidBody* body = new btRigidBody(rbInfo);
  88. //add the body to the dynamics world
  89. m_bt_world->addRigidBody(body);
  90. }
  91. //Adding Shapes
  92. {
  93. //create a few dynamic rigidbodies
  94. // Re-using the same collision is better for memory usage and performance
  95. btCollisionShape* colShape = new btBoxShape(btVector3(1,1,1));
  96. m_bt_collision_shapes << colShape;
  97. m_bt_dynamic_shapes << colShape;
  98. /// Create Dynamic Objects
  99. btTransform startTransform;
  100. startTransform.setIdentity();
  101. btScalar mass(1.f);
  102. //rigidbody is dynamic if and only if mass is non zero, otherwise static
  103. bool isDynamic = (mass != 0.f);
  104. btVector3 localInertia(0,0,0);
  105. if (isDynamic)
  106. colShape->calculateLocalInertia(mass,localInertia);
  107. int i;
  108. for (i=0;i<gNumObjects;i++)
  109. {
  110. btCollisionShape* shape = colShape;
  111. btTransform trans;
  112. trans.setIdentity();
  113. //stack them
  114. int colsize = 10;
  115. int row = (i*CUBE_HALF_EXTENTS*2)/(colsize*2*CUBE_HALF_EXTENTS);
  116. int row2 = row;
  117. int col = (i)%(colsize)-colsize/2;
  118. if (col>3)
  119. {
  120. col=11;
  121. row2 |=1;
  122. }
  123. btVector3 pos(col*2*CUBE_HALF_EXTENTS + (row2%2)*CUBE_HALF_EXTENTS,
  124. row*2*CUBE_HALF_EXTENTS+CUBE_HALF_EXTENTS+EXTRA_HEIGHT,0);
  125. trans.setOrigin(pos);
  126. float mass = 1.f;
  127. btAssert((!shape || shape->getShapeType() != INVALID_SHAPE_PROXYTYPE));
  128. //rigidbody is dynamic if and only if mass is non zero, otherwise static
  129. bool isDynamic = (mass != 0.f);
  130. btVector3 localInertia(0,0,0);
  131. if (isDynamic)
  132. shape->calculateLocalInertia(mass,localInertia);
  133. //using motionstate is recommended, it provides interpolation capabilities, and only synchronizes 'active' objects
  134. btDefaultMotionState* myMotionState = new btDefaultMotionState(startTransform);
  135. btRigidBody::btRigidBodyConstructionInfo cInfo(mass,myMotionState,shape,localInertia);
  136. btRigidBody* body = new btRigidBody(cInfo);
  137. body->setContactProcessingThreshold(BT_LARGE_FLOAT);
  138. m_bt_world->addRigidBody(body);
  139. ///when using m_ccdMode
  140. if (m_bt_ccd_mode == USE_CCD)
  141. {
  142. body->setCcdMotionThreshold(CUBE_HALF_EXTENTS);
  143. body->setCcdSweptSphereRadius(0.9*CUBE_HALF_EXTENTS);
  144. }
  145. }
  146. }
  147. }
  148. }
  149. void BtPhysTest::TickGame(float seconds)
  150. {
  151. WorldEntity::TickGame(seconds);
  152. if (Input::GetButtonState(27 /*SDLK_ESCAPE*/))
  153. Ticker::Shutdown();
  154. ///step the simulation
  155. if (m_bt_world)
  156. {
  157. m_bt_world->stepSimulation(seconds);
  158. //optional but useful: debug drawing
  159. //m_bt_world->debugDrawWorld();
  160. }
  161. }
  162. void BtPhysTest::TickDraw(float seconds)
  163. {
  164. WorldEntity::TickDraw(seconds);
  165. if (!m_ready)
  166. {
  167. m_ground_mesh.MeshConvert();
  168. m_rigid_mesh.MeshConvert();
  169. /* FIXME: this object never cleans up */
  170. m_ready = true;
  171. }
  172. Video::SetClearColor(vec4(0.0f, 0.0f, 0.12f, 1.0f));
  173. vec3 BarycenterLocation = vec3(.0f);
  174. float BarycenterFactor = 0.0f;
  175. for(int i=0;i<gNumObjects;i++)
  176. {
  177. mat4 m(1.0f);
  178. btMatrix3x3 rot; rot.setIdentity();
  179. btCollisionObject* colObj = m_bt_world->getCollisionObjectArray()[i];
  180. btRigidBody* body = btRigidBody::upcast(colObj);
  181. if(body && body->getMotionState())
  182. {
  183. btDefaultMotionState* myMotionState = (btDefaultMotionState*)body->getMotionState();
  184. myMotionState->m_graphicsWorldTrans.getOpenGLMatrix(&m[0][0]);
  185. rot = myMotionState->m_graphicsWorldTrans.getBasis();
  186. }
  187. else
  188. {
  189. colObj->getWorldTransform().getOpenGLMatrix(&m[0][0]);
  190. rot = colObj->getWorldTransform().getBasis();
  191. }
  192. if (i == 2)
  193. {
  194. BarycenterLocation += m.v3.xyz;
  195. BarycenterFactor += 1.0f;
  196. }
  197. if (i == 0)
  198. m_ground_mesh.Render(m);
  199. else
  200. m_rigid_mesh.Render(m);
  201. }
  202. if (BarycenterFactor > .0f)
  203. {
  204. BarycenterLocation /= BarycenterFactor;
  205. m_camera->SetTarget(BarycenterLocation);
  206. m_camera->SetPosition(BarycenterLocation + vec3(-50.0f, 50.0f, .0f));
  207. }
  208. }
  209. BtPhysTest::~BtPhysTest()
  210. {
  211. Ticker::Unref(m_camera);
  212. //Exit Physics
  213. {
  214. //cleanup in the reverse order of creation/initialization
  215. //remove the rigidbodies from the dynamics world and delete them
  216. for (int i = m_bt_world->getNumCollisionObjects() - 1; i >= 0 ;i--)
  217. {
  218. btCollisionObject* obj = m_bt_world->getCollisionObjectArray()[i];
  219. btRigidBody* body = btRigidBody::upcast(obj);
  220. if (body && body->getMotionState())
  221. delete body->getMotionState();
  222. m_bt_world->removeCollisionObject(obj);
  223. delete obj;
  224. }
  225. //delete collision shapes
  226. for (int j = 0; j < m_bt_collision_shapes.Count(); j++)
  227. {
  228. btCollisionShape* shape = m_bt_collision_shapes[j];
  229. delete shape;
  230. }
  231. m_bt_collision_shapes.Empty();
  232. delete m_bt_world;
  233. delete m_bt_solver;
  234. delete m_bt_broadphase;
  235. delete m_bt_dispatcher;
  236. delete m_bt_collision_config;
  237. }
  238. }
  239. int main(int argc, char **argv)
  240. {
  241. Application app("BtPhysTest", ivec2(800, 600), 60.0f);
  242. #if defined _MSC_VER && !defined _XBOX
  243. _chdir("..");
  244. #elif defined _WIN32 && !defined _XBOX
  245. _chdir("../..");
  246. #endif
  247. new BtPhysTest(argc > 1);
  248. app.ShowPointer(false);
  249. app.Run();
  250. return EXIT_SUCCESS;
  251. }