|
- //
- // Lol Engine
- //
- // Copyright: (c) 2010-2012 Sam Hocevar <sam@hocevar.net>
- // This program is free software; you can redistribute it and/or
- // modify it under the terms of the Do What The Fuck You Want To
- // Public License, Version 2, as published by Sam Hocevar. See
- // http://sam.zoy.org/projects/COPYING.WTFPL for more details.
- //
-
- #if defined HAVE_CONFIG_H
- # include "config.h"
- #endif
-
- #if defined _XBOX
- # define _USE_MATH_DEFINES /* for M_PI */
- # include <xtl.h>
- # undef near /* Fuck Microsoft */
- # undef far /* Fuck Microsoft again */
- #elif defined WIN32
- # define _USE_MATH_DEFINES /* for M_PI */
- # define WIN32_LEAN_AND_MEAN
- # include <windows.h>
- # undef near /* Fuck Microsoft */
- # undef far /* Fuck Microsoft again */
- #endif
-
- #include <new>
- #include <cstring>
- #include <cstdio>
- #include <cstdlib>
-
- #include "core.h"
-
- using namespace std;
-
- namespace lol
- {
-
- /*
- * First handle explicit specialisation of our templates.
- *
- * Initialisation order is not important because everything is
- * done on demand, but here is the dependency list anyway:
- * - fast_log() requires R_1
- * - log() requires R_LN2
- * - re() require R_2
- * - exp() requires R_0, R_1, R_LN2
- * - sqrt() requires R_3
- */
-
- static real fast_log(real const &x);
- static real fast_pi();
-
- #define LOL_CONSTANT_GETTER(name, value) \
- template<> real const& real::name() \
- { \
- static real const ret = value; \
- return ret; \
- }
-
- LOL_CONSTANT_GETTER(R_0, (real)0.0);
- LOL_CONSTANT_GETTER(R_1, (real)1.0);
- LOL_CONSTANT_GETTER(R_2, (real)2.0);
- LOL_CONSTANT_GETTER(R_3, (real)3.0);
- LOL_CONSTANT_GETTER(R_10, (real)10.0);
-
- LOL_CONSTANT_GETTER(R_LN2, fast_log(R_2()));
- LOL_CONSTANT_GETTER(R_LN10, log(R_10()));
- LOL_CONSTANT_GETTER(R_LOG2E, re(R_LN2()));
- LOL_CONSTANT_GETTER(R_LOG10E, re(R_LN10()));
- LOL_CONSTANT_GETTER(R_E, exp(R_1()));
- LOL_CONSTANT_GETTER(R_PI, fast_pi());
- LOL_CONSTANT_GETTER(R_PI_2, R_PI() / 2);
- LOL_CONSTANT_GETTER(R_PI_3, R_PI() / R_3());
- LOL_CONSTANT_GETTER(R_PI_4, R_PI() / 4);
- LOL_CONSTANT_GETTER(R_1_PI, re(R_PI()));
- LOL_CONSTANT_GETTER(R_2_PI, R_1_PI() * 2);
- LOL_CONSTANT_GETTER(R_2_SQRTPI, re(sqrt(R_PI())) * 2);
- LOL_CONSTANT_GETTER(R_SQRT2, sqrt(R_2()));
- LOL_CONSTANT_GETTER(R_SQRT3, sqrt(R_3()));
- LOL_CONSTANT_GETTER(R_SQRT1_2, R_SQRT2() / 2);
-
- #undef LOL_CONSTANT_GETTER
-
- /*
- * Now carry on with the rest of the Real class.
- */
-
- template<> real::Real()
- {
- m_mantissa = new uint32_t[BIGITS];
- memset(m_mantissa, 0, BIGITS * sizeof(uint32_t));
- m_signexp = 0;
- }
-
- template<> real::Real(real const &x)
- {
- m_mantissa = new uint32_t[BIGITS];
- memcpy(m_mantissa, x.m_mantissa, BIGITS * sizeof(uint32_t));
- m_signexp = x.m_signexp;
- }
-
- template<> real const &real::operator =(real const &x)
- {
- if (&x != this)
- {
- memcpy(m_mantissa, x.m_mantissa, BIGITS * sizeof(uint32_t));
- m_signexp = x.m_signexp;
- }
-
- return *this;
- }
-
- template<> real::~Real()
- {
- delete[] m_mantissa;
- }
-
- template<> real::Real(float f) { new(this) real((double)f); }
- template<> real::Real(int i) { new(this) real((double)i); }
- template<> real::Real(unsigned int i) { new(this) real((double)i); }
-
- template<> real::Real(double d)
- {
- new(this) real();
-
- union { double d; uint64_t x; } u = { d };
-
- uint32_t sign = (u.x >> 63) << 31;
- uint32_t exponent = (u.x << 1) >> 53;
-
- switch (exponent)
- {
- case 0x00:
- m_signexp = sign;
- break;
- case 0x7ff:
- m_signexp = sign | 0x7fffffffu;
- break;
- default:
- m_signexp = sign | (exponent + (1 << 30) - (1 << 10));
- break;
- }
-
- m_mantissa[0] = (uint32_t)(u.x >> 20);
- m_mantissa[1] = (uint32_t)(u.x << 12);
- memset(m_mantissa + 2, 0, (BIGITS - 2) * sizeof(m_mantissa[0]));
- }
-
- template<> real::operator float() const { return (float)(double)(*this); }
- template<> real::operator int() const { return (int)(double)(*this); }
- template<> real::operator unsigned() const { return (unsigned)(double)(*this); }
-
- template<> real::operator double() const
- {
- union { double d; uint64_t x; } u;
-
- /* Get sign */
- u.x = m_signexp >> 31;
- u.x <<= 11;
-
- /* Compute new exponent */
- uint32_t exponent = (m_signexp << 1) >> 1;
- int e = (int)exponent - (1 << 30) + (1 << 10);
-
- if (e < 0)
- u.x <<= 52;
- else if (e >= 0x7ff)
- {
- u.x |= 0x7ff;
- u.x <<= 52;
- }
- else
- {
- u.x |= e;
-
- /* Store mantissa if necessary */
- u.x <<= 32;
- u.x |= m_mantissa[0];
- u.x <<= 20;
- u.x |= m_mantissa[1] >> 12;
- /* Rounding */
- u.x += (m_mantissa[1] >> 11) & 1;
- }
-
- return u.d;
- }
-
- /*
- * Create a real number from an ASCII representation
- */
- template<> real::Real(char const *str)
- {
- real ret = 0;
- int exponent = 0;
- bool comma = false, nonzero = false, negative = false, finished = false;
-
- for (char const *p = str; *p && !finished; p++)
- {
- switch (*p)
- {
- case '-':
- case '+':
- if (p != str)
- break;
- negative = (*p == '-');
- break;
- case '.':
- if (comma)
- finished = true;
- comma = true;
- break;
- case '0': case '1': case '2': case '3': case '4':
- case '5': case '6': case '7': case '8': case '9':
- if (nonzero)
- {
- real x = ret + ret;
- x = x + x + ret;
- ret = x + x;
- }
- if (*p != '0')
- {
- ret += (int)(*p - '0');
- nonzero = true;
- }
- if (comma)
- exponent--;
- break;
- case 'e':
- case 'E':
- exponent += atoi(p + 1);
- finished = true;
- break;
- default:
- finished = true;
- break;
- }
- }
-
- if (exponent)
- ret *= pow(R_10(), (real)exponent);
-
- if (negative)
- ret = -ret;
-
- new(this) real(ret);
- }
-
- template<> real real::operator +() const
- {
- return *this;
- }
-
- template<> real real::operator -() const
- {
- real ret = *this;
- ret.m_signexp ^= 0x80000000u;
- return ret;
- }
-
- template<> real real::operator +(real const &x) const
- {
- if (x.m_signexp << 1 == 0)
- return *this;
-
- /* Ensure both arguments are positive. Otherwise, switch signs,
- * or replace + with -. */
- if (m_signexp >> 31)
- return -(-*this + -x);
-
- if (x.m_signexp >> 31)
- return *this - (-x);
-
- /* Ensure *this has the larger exponent (no need for the mantissa to
- * be larger, as in subtraction). Otherwise, switch. */
- if ((m_signexp << 1) < (x.m_signexp << 1))
- return x + *this;
-
- real ret;
-
- int e1 = m_signexp - (1 << 30) + 1;
- int e2 = x.m_signexp - (1 << 30) + 1;
-
- int bigoff = (e1 - e2) / BIGIT_BITS;
- int off = e1 - e2 - bigoff * BIGIT_BITS;
-
- if (bigoff > BIGITS)
- return *this;
-
- ret.m_signexp = m_signexp;
-
- uint64_t carry = 0;
- for (int i = BIGITS; i--; )
- {
- carry += m_mantissa[i];
- if (i - bigoff >= 0)
- carry += x.m_mantissa[i - bigoff] >> off;
-
- if (off && i - bigoff > 0)
- carry += (x.m_mantissa[i - bigoff - 1] << (BIGIT_BITS - off)) & 0xffffffffu;
- else if (i - bigoff == 0)
- carry += (uint64_t)1 << (BIGIT_BITS - off);
-
- ret.m_mantissa[i] = (uint32_t)carry;
- carry >>= BIGIT_BITS;
- }
-
- /* Renormalise in case we overflowed the mantissa */
- if (carry)
- {
- carry--;
- for (int i = 0; i < BIGITS; i++)
- {
- uint32_t tmp = ret.m_mantissa[i];
- ret.m_mantissa[i] = ((uint32_t)carry << (BIGIT_BITS - 1))
- | (tmp >> 1);
- carry = tmp & 1u;
- }
- ret.m_signexp++;
- }
-
- return ret;
- }
-
- template<> real real::operator -(real const &x) const
- {
- if (x.m_signexp << 1 == 0)
- return *this;
-
- /* Ensure both arguments are positive. Otherwise, switch signs,
- * or replace - with +. */
- if (m_signexp >> 31)
- return -(-*this + x);
-
- if (x.m_signexp >> 31)
- return (*this) + (-x);
-
- /* Ensure *this is larger than x */
- if (*this < x)
- return -(x - *this);
-
- real ret;
-
- int e1 = m_signexp - (1 << 30) + 1;
- int e2 = x.m_signexp - (1 << 30) + 1;
-
- int bigoff = (e1 - e2) / BIGIT_BITS;
- int off = e1 - e2 - bigoff * BIGIT_BITS;
-
- if (bigoff > BIGITS)
- return *this;
-
- ret.m_signexp = m_signexp;
-
- /* int64_t instead of uint64_t to preserve sign through shifts */
- int64_t carry = 0;
- for (int i = 0; i < bigoff; i++)
- {
- carry -= x.m_mantissa[BIGITS - 1 - i];
- /* Emulates a signed shift */
- carry >>= BIGIT_BITS;
- carry |= carry << BIGIT_BITS;
- }
- if (bigoff < BIGITS)
- carry -= x.m_mantissa[BIGITS - 1 - bigoff] & (((int64_t)1 << off) - 1);
- carry /= (int64_t)1 << off;
-
- for (int i = BIGITS; i--; )
- {
- carry += m_mantissa[i];
- if (i - bigoff >= 0)
- carry -= x.m_mantissa[i - bigoff] >> off;
-
- if (off && i - bigoff > 0)
- carry -= (x.m_mantissa[i - bigoff - 1] << (BIGIT_BITS - off)) & 0xffffffffu;
- else if (i - bigoff == 0)
- carry -= (uint64_t)1 << (BIGIT_BITS - off);
-
- ret.m_mantissa[i] = (uint32_t)carry;
- carry >>= BIGIT_BITS;
- carry |= carry << BIGIT_BITS;
- }
-
- carry += 1;
-
- /* Renormalise if we underflowed the mantissa */
- if (carry == 0)
- {
- /* How much do we need to shift the mantissa? FIXME: this could
- * be computed above */
- off = 0;
- for (int i = 0; i < BIGITS; i++)
- {
- if (!ret.m_mantissa[i])
- {
- off += BIGIT_BITS;
- continue;
- }
-
- for (uint32_t tmp = ret.m_mantissa[i]; tmp < 0x80000000u; tmp <<= 1)
- off++;
- break;
- }
- if (off == BIGITS * BIGIT_BITS)
- ret.m_signexp &= 0x80000000u;
- else
- {
- off++; /* Shift one more to get rid of the leading one */
- ret.m_signexp -= off;
-
- bigoff = off / BIGIT_BITS;
- off -= bigoff * BIGIT_BITS;
-
- for (int i = 0; i < BIGITS; i++)
- {
- uint32_t tmp = 0;
- if (i + bigoff < BIGITS)
- tmp |= ret.m_mantissa[i + bigoff] << off;
- if (off && i + bigoff + 1 < BIGITS)
- tmp |= ret.m_mantissa[i + bigoff + 1] >> (BIGIT_BITS - off);
- ret.m_mantissa[i] = tmp;
- }
- }
- }
-
- return ret;
- }
-
- template<> real real::operator *(real const &x) const
- {
- real ret;
-
- if (m_signexp << 1 == 0 || x.m_signexp << 1 == 0)
- {
- ret = (m_signexp << 1 == 0) ? *this : x;
- ret.m_signexp ^= x.m_signexp & 0x80000000u;
- return ret;
- }
-
- ret.m_signexp = (m_signexp ^ x.m_signexp) & 0x80000000u;
- int e = (m_signexp & 0x7fffffffu) - (1 << 30) + 1
- + (x.m_signexp & 0x7fffffffu) - (1 << 30) + 1;
-
- /* Accumulate low order product; no need to store it, we just
- * want the carry value */
- uint64_t carry = 0, hicarry = 0, prev;
- for (int i = 0; i < BIGITS; i++)
- {
- for (int j = 0; j < i + 1; j++)
- {
- prev = carry;
- carry += (uint64_t)m_mantissa[BIGITS - 1 - j]
- * (uint64_t)x.m_mantissa[BIGITS - 1 + j - i];
- if (carry < prev)
- hicarry++;
- }
- carry >>= BIGIT_BITS;
- carry |= hicarry << BIGIT_BITS;
- hicarry >>= BIGIT_BITS;
- }
-
- for (int i = 0; i < BIGITS; i++)
- {
- for (int j = i + 1; j < BIGITS; j++)
- {
- prev = carry;
- carry += (uint64_t)m_mantissa[BIGITS - 1 - j]
- * (uint64_t)x.m_mantissa[j - 1 - i];
- if (carry < prev)
- hicarry++;
- }
- prev = carry;
- carry += m_mantissa[BIGITS - 1 - i];
- carry += x.m_mantissa[BIGITS - 1 - i];
- if (carry < prev)
- hicarry++;
- ret.m_mantissa[BIGITS - 1 - i] = carry & 0xffffffffu;
- carry >>= BIGIT_BITS;
- carry |= hicarry << BIGIT_BITS;
- hicarry >>= BIGIT_BITS;
- }
-
- /* Renormalise in case we overflowed the mantissa */
- if (carry)
- {
- carry--;
- for (int i = 0; i < BIGITS; i++)
- {
- uint32_t tmp = (uint32_t)ret.m_mantissa[i];
- ret.m_mantissa[i] = ((uint32_t)carry << (BIGIT_BITS - 1))
- | (tmp >> 1);
- carry = tmp & 1u;
- }
- e++;
- }
-
- ret.m_signexp |= e + (1 << 30) - 1;
-
- return ret;
- }
-
- template<> real real::operator /(real const &x) const
- {
- return *this * re(x);
- }
-
- template<> real const &real::operator +=(real const &x)
- {
- real tmp = *this;
- return *this = tmp + x;
- }
-
- template<> real const &real::operator -=(real const &x)
- {
- real tmp = *this;
- return *this = tmp - x;
- }
-
- template<> real const &real::operator *=(real const &x)
- {
- real tmp = *this;
- return *this = tmp * x;
- }
-
- template<> real const &real::operator /=(real const &x)
- {
- real tmp = *this;
- return *this = tmp / x;
- }
-
- template<> bool real::operator ==(real const &x) const
- {
- if ((m_signexp << 1) == 0 && (x.m_signexp << 1) == 0)
- return true;
-
- if (m_signexp != x.m_signexp)
- return false;
-
- return memcmp(m_mantissa, x.m_mantissa, BIGITS * sizeof(uint32_t)) == 0;
- }
-
- template<> bool real::operator !=(real const &x) const
- {
- return !(*this == x);
- }
-
- template<> bool real::operator <(real const &x) const
- {
- /* Ensure both numbers are positive */
- if (m_signexp >> 31)
- return (x.m_signexp >> 31) ? -*this > -x : true;
-
- if (x.m_signexp >> 31)
- return false;
-
- /* Compare all relevant bits */
- if (m_signexp != x.m_signexp)
- return m_signexp < x.m_signexp;
-
- for (int i = 0; i < BIGITS; i++)
- if (m_mantissa[i] != x.m_mantissa[i])
- return m_mantissa[i] < x.m_mantissa[i];
-
- return false;
- }
-
- template<> bool real::operator <=(real const &x) const
- {
- return !(*this > x);
- }
-
- template<> bool real::operator >(real const &x) const
- {
- /* Ensure both numbers are positive */
- if (m_signexp >> 31)
- return (x.m_signexp >> 31) ? -*this < -x : false;
-
- if (x.m_signexp >> 31)
- return true;
-
- /* Compare all relevant bits */
- if (m_signexp != x.m_signexp)
- return m_signexp > x.m_signexp;
-
- for (int i = 0; i < BIGITS; i++)
- if (m_mantissa[i] != x.m_mantissa[i])
- return m_mantissa[i] > x.m_mantissa[i];
-
- return false;
- }
-
- template<> bool real::operator >=(real const &x) const
- {
- return !(*this < x);
- }
-
- template<> bool real::operator !() const
- {
- return !(bool)*this;
- }
-
- template<> real::operator bool() const
- {
- /* A real is "true" if it is non-zero (exponent is non-zero) AND
- * not NaN (exponent is not full bits OR higher order mantissa is zero) */
- uint32_t exponent = m_signexp << 1;
- return exponent && (~exponent || m_mantissa[0] == 0);
- }
-
- template<> real min(real const &a, real const &b)
- {
- return (a < b) ? a : b;
- }
-
- template<> real max(real const &a, real const &b)
- {
- return (a > b) ? a : b;
- }
-
- template<> real clamp(real const &x, real const &a, real const &b)
- {
- return (x < a) ? a : (x > b) ? b : x;
- }
-
- template<> real re(real const &x)
- {
- if (!(x.m_signexp << 1))
- {
- real ret = x;
- ret.m_signexp = x.m_signexp | 0x7fffffffu;
- ret.m_mantissa[0] = 0;
- return ret;
- }
-
- /* Use the system's float inversion to approximate 1/x */
- union { float f; uint32_t x; } u = { 1.0f }, v = { 1.0f };
- v.x |= x.m_mantissa[0] >> 9;
- v.f = 1.0f / v.f;
-
- real ret;
- ret.m_mantissa[0] = v.x << 9;
-
- uint32_t sign = x.m_signexp & 0x80000000u;
- ret.m_signexp = sign;
-
- int exponent = (x.m_signexp & 0x7fffffffu) + 1;
- exponent = -exponent + (v.x >> 23) - (u.x >> 23);
- ret.m_signexp |= (exponent - 1) & 0x7fffffffu;
-
- /* FIXME: 1+log2(BIGITS) steps of Newton-Raphson seems to be enough for
- * convergence, but this hasn't been checked seriously. */
- for (int i = 1; i <= real::BIGITS; i *= 2)
- ret = ret * (real::R_2() - ret * x);
-
- return ret;
- }
-
- template<> real sqrt(real const &x)
- {
- /* if zero, return x */
- if (!(x.m_signexp << 1))
- return x;
-
- /* if negative, return NaN */
- if (x.m_signexp >> 31)
- {
- real ret;
- ret.m_signexp = 0x7fffffffu;
- ret.m_mantissa[0] = 0xffffu;
- return ret;
- }
-
- /* Use the system's float inversion to approximate 1/sqrt(x). First
- * we construct a float in the [1..4[ range that has roughly the same
- * mantissa as our real. Its exponent is 0 or 1, depending on the
- * partity of x. The final exponent is 0, -1 or -2. We use the final
- * exponent and final mantissa to pre-fill the result. */
- union { float f; uint32_t x; } u = { 1.0f }, v = { 2.0f };
- v.x -= ((x.m_signexp & 1) << 23);
- v.x |= x.m_mantissa[0] >> 9;
- v.f = 1.0f / sqrtf(v.f);
-
- real ret;
- ret.m_mantissa[0] = v.x << 9;
-
- uint32_t sign = x.m_signexp & 0x80000000u;
- ret.m_signexp = sign;
-
- uint32_t exponent = (x.m_signexp & 0x7fffffffu);
- exponent = ((1 << 30) + (1 << 29) - 1) - (exponent + 1) / 2;
- exponent = exponent + (v.x >> 23) - (u.x >> 23);
- ret.m_signexp |= exponent & 0x7fffffffu;
-
- /* FIXME: 1+log2(BIGITS) steps of Newton-Raphson seems to be enough for
- * convergence, but this hasn't been checked seriously. */
- for (int i = 1; i <= real::BIGITS; i *= 2)
- {
- ret = ret * (real::R_3() - ret * ret * x);
- ret.m_signexp--;
- }
-
- return ret * x;
- }
-
- template<> real cbrt(real const &x)
- {
- /* if zero, return x */
- if (!(x.m_signexp << 1))
- return x;
-
- /* Use the system's float inversion to approximate cbrt(x). First
- * we construct a float in the [1..8[ range that has roughly the same
- * mantissa as our real. Its exponent is 0, 1 or 2, depending on the
- * value of x. The final exponent is 0 or 1 (special case). We use
- * the final exponent and final mantissa to pre-fill the result. */
- union { float f; uint32_t x; } u = { 1.0f }, v = { 1.0f };
- v.x += ((x.m_signexp % 3) << 23);
- v.x |= x.m_mantissa[0] >> 9;
- v.f = powf(v.f, 0.33333333333333333f);
-
- real ret;
- ret.m_mantissa[0] = v.x << 9;
-
- uint32_t sign = x.m_signexp & 0x80000000u;
- ret.m_signexp = sign;
-
- int exponent = (x.m_signexp & 0x7fffffffu) - (1 << 30) + 1;
- exponent = exponent / 3 + (v.x >> 23) - (u.x >> 23);
- ret.m_signexp |= (exponent + (1 << 30) - 1) & 0x7fffffffu;
-
- /* FIXME: 1+log2(BIGITS) steps of Newton-Raphson seems to be enough for
- * convergence, but this hasn't been checked seriously. */
- for (int i = 1; i <= real::BIGITS; i *= 2)
- {
- static real third = re(real::R_3());
- ret = third * (x / (ret * ret) + (ret / 2));
- }
-
- return ret;
- }
-
- template<> real pow(real const &x, real const &y)
- {
- if (!y)
- return real::R_1();
- if (!x)
- return real::R_0();
- if (x > real::R_0())
- return exp(y * log(x));
- else /* x < 0 */
- {
- /* Odd integer exponent */
- if (y == (round(y / 2) * 2))
- return exp(y * log(-x));
-
- /* Even integer exponent */
- if (y == round(y))
- return -exp(y * log(-x));
-
- /* FIXME: negative nth root */
- return real::R_0();
- }
- }
-
- static real fast_fact(int x)
- {
- real ret = real::R_1();
- int i = 1, multiplier = 1, exponent = 0;
-
- for (;;)
- {
- if (i++ >= x)
- /* Multiplication is a no-op if multiplier == 1 */
- return ldexp(ret * multiplier, exponent);
-
- int tmp = i;
- while ((tmp & 1) == 0)
- {
- tmp >>= 1;
- exponent++;
- }
- if (multiplier * tmp / tmp != multiplier)
- {
- ret *= multiplier;
- multiplier = 1;
- }
- multiplier *= tmp;
- }
- }
-
- template<> real gamma(real const &x)
- {
- /* We use Spouge's formula. FIXME: precision is far from acceptable,
- * especially with large values. We need to compute this with higher
- * precision values in order to attain the desired accuracy. It might
- * also be useful to sort the ck values by decreasing absolute value
- * and do the addition in this order. */
- int a = ceilf(logf(2) / logf(2 * M_PI) * real::BIGITS * real::BIGIT_BITS);
-
- real ret = sqrt(real::R_PI() * 2);
- real fact_k_1 = real::R_1();
-
- for (int k = 1; k < a; k++)
- {
- real a_k = (real)(a - k);
- real ck = pow(a_k, (real)((float)k - 0.5)) * exp(a_k)
- / (fact_k_1 * (x + (real)(k - 1)));
- ret += ck;
- fact_k_1 *= (real)-k;
- }
-
- ret *= pow(x + (real)(a - 1), x - (real::R_1() / 2));
- ret *= exp(-x - (real)(a - 1));
-
- return ret;
- }
-
- template<> real fabs(real const &x)
- {
- real ret = x;
- ret.m_signexp &= 0x7fffffffu;
- return ret;
- }
-
- static real fast_log(real const &x)
- {
- /* This fast log method is tuned to work on the [1..2] range and
- * no effort whatsoever was made to improve convergence outside this
- * domain of validity. It can converge pretty fast, provided we use
- * the following variable substitutions:
- * y = sqrt(x)
- * z = (y - 1) / (y + 1)
- *
- * And the following identities:
- * ln(x) = 2 ln(y)
- * = 2 ln((1 + z) / (1 - z))
- * = 4 z (1 + z^2 / 3 + z^4 / 5 + z^6 / 7...)
- *
- * Any additional sqrt() call would halve the convergence time, but
- * would also impact the final precision. For now we stick with one
- * sqrt() call. */
- real y = sqrt(x);
- real z = (y - real::R_1()) / (y + real::R_1()), z2 = z * z, zn = z2;
- real sum = real::R_1();
-
- for (int i = 3; ; i += 2)
- {
- real newsum = sum + zn / (real)i;
- if (newsum == sum)
- break;
- sum = newsum;
- zn *= z2;
- }
-
- return z * sum * 4;
- }
-
- template<> real log(real const &x)
- {
- /* Strategy for log(x): if x = 2^E*M then log(x) = E log(2) + log(M),
- * with the property that M is in [1..2[, so fast_log() applies here. */
- real tmp = x;
- if (x.m_signexp >> 31 || x.m_signexp == 0)
- {
- tmp.m_signexp = 0xffffffffu;
- tmp.m_mantissa[0] = 0xffffffffu;
- return tmp;
- }
- tmp.m_signexp = (1 << 30) - 1;
- return (real)(int)(x.m_signexp - (1 << 30) + 1) * real::R_LN2()
- + fast_log(tmp);
- }
-
- template<> real log2(real const &x)
- {
- /* Strategy for log2(x): see log(x). */
- real tmp = x;
- if (x.m_signexp >> 31 || x.m_signexp == 0)
- {
- tmp.m_signexp = 0xffffffffu;
- tmp.m_mantissa[0] = 0xffffffffu;
- return tmp;
- }
- tmp.m_signexp = (1 << 30) - 1;
- return (real)(int)(x.m_signexp - (1 << 30) + 1)
- + fast_log(tmp) * real::R_LOG2E();
- }
-
- template<> real log10(real const &x)
- {
- return log(x) * real::R_LOG10E();
- }
-
- static real fast_exp_sub(real const &x, real const &y)
- {
- /* This fast exp method is tuned to work on the [-1..1] range and
- * no effort whatsoever was made to improve convergence outside this
- * domain of validity. The argument y is used for cases where we
- * don't want the leading 1 in the Taylor series. */
- real ret = real::R_1() - y, xn = x;
- int i = 1;
-
- for (;;)
- {
- real newret = ret + xn;
- if (newret == ret)
- break;
- ret = newret * ++i;
- xn *= x;
- }
-
- return ret / fast_fact(i);
- }
-
- template<> real exp(real const &x)
- {
- /* Strategy for exp(x): the Taylor series does not converge very fast
- * with large positive or negative values.
- *
- * However, we know that the result is going to be in the form M*2^E,
- * where M is the mantissa and E the exponent. We first try to predict
- * a value for E, which is approximately log2(exp(x)) = x / log(2).
- *
- * Let E0 be an integer close to x / log(2). We need to find a value x0
- * such that exp(x) = 2^E0 * exp(x0). We get x0 = x - E0 log(2).
- *
- * Thus the final algorithm:
- * int E0 = x / log(2)
- * real x0 = x - E0 log(2)
- * real x1 = exp(x0)
- * return x1 * 2^E0
- */
- int e0 = x / real::R_LN2();
- real x0 = x - (real)e0 * real::R_LN2();
- real x1 = fast_exp_sub(x0, real::R_0());
- x1.m_signexp += e0;
- return x1;
- }
-
- template<> real exp2(real const &x)
- {
- /* Strategy for exp2(x): see strategy in exp(). */
- int e0 = x;
- real x0 = x - (real)e0;
- real x1 = fast_exp_sub(x0 * real::R_LN2(), real::R_0());
- x1.m_signexp += e0;
- return x1;
- }
-
- template<> real sinh(real const &x)
- {
- /* We cannot always use (exp(x)-exp(-x))/2 because we'll lose
- * accuracy near zero. We only use this identity for |x|>0.5. If
- * |x|<=0.5, we compute exp(x)-1 and exp(-x)-1 instead. */
- bool near_zero = (fabs(x) < real::R_1() / 2);
- real x1 = near_zero ? fast_exp_sub(x, real::R_1()) : exp(x);
- real x2 = near_zero ? fast_exp_sub(-x, real::R_1()) : exp(-x);
- return (x1 - x2) / 2;
- }
-
- template<> real tanh(real const &x)
- {
- /* See sinh() for the strategy here */
- bool near_zero = (fabs(x) < real::R_1() / 2);
- real x1 = near_zero ? fast_exp_sub(x, real::R_1()) : exp(x);
- real x2 = near_zero ? fast_exp_sub(-x, real::R_1()) : exp(-x);
- real x3 = near_zero ? x1 + x2 + real::R_2() : x1 + x2;
- return (x1 - x2) / x3;
- }
-
- template<> real cosh(real const &x)
- {
- /* No need to worry about accuracy here; maybe the last bit is slightly
- * off, but that's about it. */
- return (exp(x) + exp(-x)) / 2;
- }
-
- template<> real frexp(real const &x, int *exp)
- {
- if (!x)
- {
- *exp = 0;
- return x;
- }
-
- real ret = x;
- int exponent = (ret.m_signexp & 0x7fffffffu) - (1 << 30) + 1;
- *exp = exponent + 1;
- ret.m_signexp -= exponent + 1;
- return ret;
- }
-
- template<> real ldexp(real const &x, int exp)
- {
- real ret = x;
- if (ret)
- ret.m_signexp += exp;
- return ret;
- }
-
- template<> real modf(real const &x, real *iptr)
- {
- real absx = fabs(x);
- real tmp = floor(absx);
-
- *iptr = copysign(tmp, x);
- return copysign(absx - tmp, x);
- }
-
- template<> real ulp(real const &x)
- {
- real ret = real::R_1();
- if (x)
- ret.m_signexp = x.m_signexp + 1 - real::BIGITS * real::BIGIT_BITS;
- else
- ret.m_signexp = 0;
- return ret;
- }
-
- template<> real nextafter(real const &x, real const &y)
- {
- if (x == y)
- return x;
- else if (x < y)
- return x + ulp(x);
- else
- return x - ulp(x);
- }
-
- template<> real copysign(real const &x, real const &y)
- {
- real ret = x;
- ret.m_signexp &= 0x7fffffffu;
- ret.m_signexp |= y.m_signexp & 0x80000000u;
- return ret;
- }
-
- template<> real floor(real const &x)
- {
- /* Strategy for floor(x):
- * - if negative, return -ceil(-x)
- * - if zero or negative zero, return x
- * - if less than one, return zero
- * - otherwise, if e is the exponent, clear all bits except the
- * first e. */
- if (x < -real::R_0())
- return -ceil(-x);
- if (!x)
- return x;
- if (x < real::R_1())
- return real::R_0();
-
- real ret = x;
- int exponent = x.m_signexp - (1 << 30) + 1;
-
- for (int i = 0; i < real::BIGITS; i++)
- {
- if (exponent <= 0)
- ret.m_mantissa[i] = 0;
- else if (exponent < real::BIGIT_BITS)
- ret.m_mantissa[i] &= ~((1 << (real::BIGIT_BITS - exponent)) - 1);
-
- exponent -= real::BIGIT_BITS;
- }
-
- return ret;
- }
-
- template<> real ceil(real const &x)
- {
- /* Strategy for ceil(x):
- * - if negative, return -floor(-x)
- * - if x == floor(x), return x
- * - otherwise, return floor(x) + 1 */
- if (x < -real::R_0())
- return -floor(-x);
- real ret = floor(x);
- if (x == ret)
- return ret;
- else
- return ret + real::R_1();
- }
-
- template<> real round(real const &x)
- {
- if (x < real::R_0())
- return -round(-x);
-
- return floor(x + (real::R_1() / 2));
- }
-
- template<> real fmod(real const &x, real const &y)
- {
- if (!y)
- return real::R_0(); /* FIXME: return NaN */
-
- if (!x)
- return x;
-
- real tmp = round(x / y);
- return x - tmp * y;
- }
-
- template<> real sin(real const &x)
- {
- int switch_sign = x.m_signexp & 0x80000000u;
-
- real absx = fmod(fabs(x), real::R_PI() * 2);
- if (absx > real::R_PI())
- {
- absx -= real::R_PI();
- switch_sign = !switch_sign;
- }
-
- if (absx > real::R_PI_2())
- absx = real::R_PI() - absx;
-
- real ret = real::R_0(), fact = real::R_1(), xn = absx, mx2 = -absx * absx;
- int i = 1;
- for (;;)
- {
- real newret = ret + xn;
- if (newret == ret)
- break;
- ret = newret * ((i + 1) * (i + 2));
- xn *= mx2;
- i += 2;
- }
- ret /= fast_fact(i);
-
- /* Propagate sign */
- if (switch_sign)
- ret.m_signexp ^= 0x80000000u;
- return ret;
- }
-
- template<> real cos(real const &x)
- {
- return sin(real::R_PI_2() - x);
- }
-
- template<> real tan(real const &x)
- {
- /* Constrain input to [-π,π] */
- real y = fmod(x, real::R_PI());
-
- /* Constrain input to [-π/2,π/2] */
- if (y < -real::R_PI_2())
- y += real::R_PI();
- else if (y > real::R_PI_2())
- y -= real::R_PI();
-
- /* In [-π/4,π/4] return sin/cos */
- if (fabs(y) <= real::R_PI_4())
- return sin(y) / cos(y);
-
- /* Otherwise, return cos/sin */
- if (y > real::R_0())
- y = real::R_PI_2() - y;
- else
- y = -real::R_PI_2() - y;
-
- return cos(y) / sin(y);
- }
-
- static inline real asinacos(real const &x, int is_asin, int is_negative)
- {
- /* Strategy for asin(): in [-0.5..0.5], use a Taylor series around
- * zero. In [0.5..1], use asin(x) = π/2 - 2*asin(sqrt((1-x)/2)), and
- * in [-1..-0.5] just revert the sign.
- * Strategy for acos(): use acos(x) = π/2 - asin(x) and try not to
- * lose the precision around x=1. */
- real absx = fabs(x);
- int around_zero = (absx < (real::R_1() / 2));
-
- if (!around_zero)
- absx = sqrt((real::R_1() - absx) / 2);
-
- real ret = absx, xn = absx, x2 = absx * absx, fact1 = 2, fact2 = 1;
- for (int i = 1; ; i++)
- {
- xn *= x2;
- real mul = (real)(2 * i + 1);
- real newret = ret + ldexp(fact1 * xn / (mul * fact2), -2 * i);
- if (newret == ret)
- break;
- ret = newret;
- fact1 *= (real)((2 * i + 1) * (2 * i + 2));
- fact2 *= (real)((i + 1) * (i + 1));
- }
-
- if (is_negative)
- ret = -ret;
-
- if (around_zero)
- ret = is_asin ? ret : real::R_PI_2() - ret;
- else
- {
- real adjust = is_negative ? real::R_PI() : real::R_0();
- if (is_asin)
- ret = real::R_PI_2() - adjust - ret * 2;
- else
- ret = adjust + ret * 2;
- }
-
- return ret;
- }
-
- template<> real asin(real const &x)
- {
- return asinacos(x, 1, x.m_signexp >> 31);
- }
-
- template<> real acos(real const &x)
- {
- return asinacos(x, 0, x.m_signexp >> 31);
- }
-
- template<> real atan(real const &x)
- {
- /* Computing atan(x): we choose a different Taylor series depending on
- * the value of x to help with convergence.
- *
- * If |x| < 0.5 we evaluate atan(y) near 0:
- * atan(y) = y - y^3/3 + y^5/5 - y^7/7 + y^9/9 ...
- *
- * If 0.5 <= |x| < 1.5 we evaluate atan(1+y) near 0:
- * atan(1+y) = π/4 + y/(1*2^1) - y^2/(2*2^1) + y^3/(3*2^2)
- * - y^5/(5*2^3) + y^6/(6*2^3) - y^7/(7*2^4)
- * + y^9/(9*2^5) - y^10/(10*2^5) + y^11/(11*2^6) ...
- *
- * If 1.5 <= |x| < 2 we evaluate atan(sqrt(3)+2y) near 0:
- * atan(sqrt(3)+2y) = π/3 + 1/2 y - sqrt(3)/2 y^2/2
- * + y^3/3 - sqrt(3)/2 y^4/4 + 1/2 y^5/5
- * - 1/2 y^7/7 + sqrt(3)/2 y^8/8
- * - y^9/9 + sqrt(3)/2 y^10/10 - 1/2 y^11/11
- * + 1/2 y^13/13 - sqrt(3)/2 y^14/14
- * + y^15/15 - sqrt(3)/2 y^16/16 + 1/2 y^17/17 ...
- *
- * If |x| >= 2 we evaluate atan(y) near +∞:
- * atan(y) = π/2 - y^-1 + y^-3/3 - y^-5/5 + y^-7/7 - y^-9/9 ...
- */
- real absx = fabs(x);
-
- if (absx < (real::R_1() / 2))
- {
- real ret = x, xn = x, mx2 = -x * x;
- for (int i = 3; ; i += 2)
- {
- xn *= mx2;
- real newret = ret + xn / (real)i;
- if (newret == ret)
- break;
- ret = newret;
- }
- return ret;
- }
-
- real ret = 0;
-
- if (absx < (real::R_3() / 2))
- {
- real y = real::R_1() - absx;
- real yn = y, my2 = -y * y;
- for (int i = 0; ; i += 2)
- {
- real newret = ret + ldexp(yn / (real)(2 * i + 1), -i - 1);
- yn *= y;
- newret += ldexp(yn / (real)(2 * i + 2), -i - 1);
- yn *= y;
- newret += ldexp(yn / (real)(2 * i + 3), -i - 2);
- if (newret == ret)
- break;
- ret = newret;
- yn *= my2;
- }
- ret = real::R_PI_4() - ret;
- }
- else if (absx < real::R_2())
- {
- real y = (absx - real::R_SQRT3()) / 2;
- real yn = y, my2 = -y * y;
- for (int i = 1; ; i += 6)
- {
- real newret = ret + ((yn / (real)i) / 2);
- yn *= y;
- newret -= (real::R_SQRT3() / 2) * yn / (real)(i + 1);
- yn *= y;
- newret += yn / (real)(i + 2);
- yn *= y;
- newret -= (real::R_SQRT3() / 2) * yn / (real)(i + 3);
- yn *= y;
- newret += (yn / (real)(i + 4)) / 2;
- if (newret == ret)
- break;
- ret = newret;
- yn *= my2;
- }
- ret = real::R_PI_3() + ret;
- }
- else
- {
- real y = re(absx);
- real yn = y, my2 = -y * y;
- ret = y;
- for (int i = 3; ; i += 2)
- {
- yn *= my2;
- real newret = ret + yn / (real)i;
- if (newret == ret)
- break;
- ret = newret;
- }
- ret = real::R_PI_2() - ret;
- }
-
- /* Propagate sign */
- ret.m_signexp |= (x.m_signexp & 0x80000000u);
- return ret;
- }
-
- template<> real atan2(real const &y, real const &x)
- {
- if (!y)
- {
- if ((x.m_signexp >> 31) == 0)
- return y;
- if (y.m_signexp >> 31)
- return -real::R_PI();
- return real::R_PI();
- }
-
- if (!x)
- {
- if (y.m_signexp >> 31)
- return -real::R_PI();
- return real::R_PI();
- }
-
- /* FIXME: handle the Inf and NaN cases */
- real z = y / x;
- real ret = atan(z);
- if (x < real::R_0())
- ret += (y > real::R_0()) ? real::R_PI() : -real::R_PI();
- return ret;
- }
-
- template<> void real::hexprint() const
- {
- std::printf("%08x", m_signexp);
- for (int i = 0; i < BIGITS; i++)
- std::printf(" %08x", m_mantissa[i]);
- std::printf("\n");
- }
-
- template<> void real::sprintf(char *str, int ndigits) const;
-
- template<> void real::print(int ndigits) const
- {
- char *buf = new char[ndigits + 32 + 10];
- real::sprintf(buf, ndigits);
- std::printf("%s\n", buf);
- delete[] buf;
- }
-
- template<> void real::sprintf(char *str, int ndigits) const
- {
- real x = *this;
-
- if (x.m_signexp >> 31)
- {
- *str++ = '-';
- x = -x;
- }
-
- if (!x)
- {
- std::strcpy(str, "0.0\n");
- return;
- }
-
- /* Normalise x so that mantissa is in [1..9.999] */
- /* FIXME: better use int64_t when the cast is implemented */
- int exponent = ceil(log10(x));
- x /= pow(R_10(), (real)exponent);
-
- if (x < R_1())
- {
- x *= R_10();
- exponent--;
- }
-
- /* Print digits */
- for (int i = 0; i < ndigits; i++)
- {
- int digit = (int)floor(x);
- *str++ = '0' + digit;
- if (i == 0)
- *str++ = '.';
- x -= real(digit);
- x *= R_10();
- }
-
- /* Print exponent information */
- if (exponent)
- str += std::sprintf(str, "e%c%i", exponent > 0 ? '+' : '-', -exponent);
-
- *str++ = '\0';
- }
-
- static real fast_pi()
- {
- /* Approximate Pi using Machin's formula: 16*atan(1/5)-4*atan(1/239) */
- real ret = 0, x0 = 5, x1 = 239;
- real const m0 = -x0 * x0, m1 = -x1 * x1, r16 = 16, r4 = 4;
-
- for (int i = 1; ; i += 2)
- {
- real newret = ret + r16 / (x0 * (real)i) - r4 / (x1 * (real)i);
- if (newret == ret)
- break;
- ret = newret;
- x0 *= m0;
- x1 *= m1;
- }
-
- return ret;
- }
-
- } /* namespace lol */
|