git-svn-id: file:///srv/caca.zoy.org/var/lib/svn/libpipi/trunk@2736 92316355-f0b4-4df1-b90c-862c8a59935fremotes/tiles
| @@ -8,331 +8,8 @@ | |||
| #include <pipi.h> | |||
| #define R 0 | |||
| #define G 1 | |||
| #define B 2 | |||
| #define X 3 | |||
| #define Y 4 | |||
| #define A 5 | |||
| //#define debug printf | |||
| #define debug(...) /* */ | |||
| #define BRIGHT(x) (0.299*(x)[0] + 0.587*(x)[1] + 0.114*(x)[2]) | |||
| #define MAXCOLORS 16 | |||
| #define STEPS 256 | |||
| #define EPSILON (0.000001) | |||
| typedef struct | |||
| { | |||
| double pts[STEPS + 1][MAXCOLORS * (MAXCOLORS - 1) / 2][6]; | |||
| int hullsize[STEPS + 1]; | |||
| double bary[STEPS + 1][3]; | |||
| } | |||
| hull_t; | |||
| static double const y[3] = { .299, .587, .114 }; | |||
| static double u[3], v[3]; | |||
| static int ylen; | |||
| /* | |||
| * Find two base vectors for the chrominance planes. | |||
| */ | |||
| static void init_uv(void) | |||
| { | |||
| double tmp; | |||
| ylen = sqrt(y[R] * y[R] + y[G] * y[G] + y[B] * y[B]); | |||
| u[R] = y[1]; | |||
| u[G] = -y[0]; | |||
| u[B] = 0; | |||
| tmp = sqrt(u[R] * u[R] + u[G] * u[G] + u[B] * u[B]); | |||
| u[R] /= tmp; u[G] /= tmp; u[B] /= tmp; | |||
| v[R] = y[G] * u[B] - y[B] * u[G]; | |||
| v[G] = y[B] * u[R] - y[R] * u[B]; | |||
| v[B] = y[R] * u[G] - y[G] * u[R]; | |||
| tmp = sqrt(v[R] * v[R] + v[G] * v[G] + v[B] * v[B]); | |||
| v[R] /= tmp; v[G] /= tmp; v[B] /= tmp; | |||
| } | |||
| /* | |||
| * Compute the convex hull of a given palette. | |||
| */ | |||
| static hull_t *compute_hull(int ncolors, double const *palette) | |||
| { | |||
| hull_t *ret = malloc(sizeof(hull_t)); | |||
| double tmp; | |||
| int i, j; | |||
| debug("\n### NEW HULL ###\n\n"); | |||
| debug("Analysing %i colors\n", ncolors); | |||
| double pal[ncolors][3]; | |||
| for(i = 0; i < ncolors; i++) | |||
| { | |||
| pal[i][R] = palette[i * 3]; | |||
| pal[i][G] = palette[i * 3 + 1]; | |||
| pal[i][B] = palette[i * 3 + 2]; | |||
| debug(" [%i] (%g,%g,%g)\n", i, pal[i][R], pal[i][G], pal[i][B]); | |||
| } | |||
| /* | |||
| * 1. Find the darkest and lightest colours | |||
| */ | |||
| double *dark = NULL, *light = NULL; | |||
| double min = 1.0, max = 0.0; | |||
| for(i = 0; i < ncolors; i++) | |||
| { | |||
| double p = BRIGHT(pal[i]); | |||
| if(p < min) | |||
| { | |||
| dark = pal[i]; | |||
| min = p; | |||
| } | |||
| if(p > max) | |||
| { | |||
| light = pal[i]; | |||
| max = p; | |||
| } | |||
| } | |||
| double gray[3]; | |||
| gray[R] = light[R] - dark[R]; | |||
| gray[G] = light[G] - dark[G]; | |||
| gray[B] = light[B] - dark[B]; | |||
| debug(" gray axis (%g,%g,%g) - (%g,%g,%g)\n", | |||
| dark[R], dark[G], dark[B], light[R], light[G], light[B]); | |||
| /* | |||
| * 3. Browse the grey axis and do stuff | |||
| */ | |||
| int n; | |||
| for(n = 0; n <= STEPS; n++) | |||
| { | |||
| double pts[ncolors * (ncolors - 1) / 2][5]; | |||
| double ptmp[5]; | |||
| #define SWAP(p1,p2) do { memcpy(ptmp, p1, sizeof(ptmp)); \ | |||
| memcpy(p1, p2, sizeof(ptmp)); \ | |||
| memcpy(p2, ptmp, sizeof(ptmp)); } while(0) | |||
| double t = n * 1.0 / STEPS; | |||
| int npts = 0; | |||
| debug("Slice %i/%i\n", n, STEPS); | |||
| double p0[3]; | |||
| p0[R] = dark[R] + t * gray[R]; | |||
| p0[G] = dark[G] + t * gray[G]; | |||
| p0[B] = dark[B] + t * gray[B]; | |||
| debug(" 3D gray (%g,%g,%g)\n", p0[R], p0[G], p0[B]); | |||
| /* | |||
| * 3.1. Find all edges that intersect the t.y + (u,v) plane | |||
| */ | |||
| for(i = 0; i < ncolors; i++) | |||
| { | |||
| double k1[3]; | |||
| k1[R] = pal[i][R] - p0[R]; | |||
| k1[G] = pal[i][G] - p0[G]; | |||
| k1[B] = pal[i][B] - p0[B]; | |||
| tmp = sqrt(k1[R] * k1[R] + k1[G] * k1[G] + k1[B] * k1[B]); | |||
| /* If k1.y > t.y.y, we don't want this point */ | |||
| double yk1 = y[R] * k1[R] + y[G] * k1[G] + y[B] * k1[B]; | |||
| if(yk1 > t * ylen * ylen + EPSILON) | |||
| continue; | |||
| for(j = 0; j < ncolors; j++) | |||
| { | |||
| if(i == j) | |||
| continue; | |||
| double k2[3]; | |||
| k2[R] = pal[j][R] - p0[R]; | |||
| k2[G] = pal[j][G] - p0[G]; | |||
| k2[B] = pal[j][B] - p0[B]; | |||
| tmp = sqrt(k2[R] * k2[R] + k2[G] * k2[G] + k2[B] * k2[B]); | |||
| /* If k2.y < t.y.y, we don't want this point */ | |||
| double yk2 = y[R] * k2[R] + y[G] * k2[G] + y[B] * k2[B]; | |||
| if(yk2 < t * ylen * ylen - EPSILON) | |||
| continue; | |||
| if(yk2 < yk1) | |||
| continue; | |||
| double s = yk1 == yk2 ? | |||
| 0.5 : (t * ylen * ylen - yk1) / (yk2 - yk1); | |||
| pts[npts][R] = p0[R] + k1[R] + s * (k2[R] - k1[R]); | |||
| pts[npts][G] = p0[G] + k1[G] + s * (k2[G] - k1[G]); | |||
| pts[npts][B] = p0[B] + k1[B] + s * (k2[B] - k1[B]); | |||
| npts++; | |||
| } | |||
| } | |||
| /* | |||
| * 3.2. Find the barycentre of these points' convex hull. We use | |||
| * the Graham Scan technique. | |||
| */ | |||
| /* Make our problem a 2-D problem. */ | |||
| for(i = 0; i < npts; i++) | |||
| { | |||
| pts[i][X] = (pts[i][R] - p0[R]) * u[R] | |||
| + (pts[i][G] - p0[G]) * u[G] | |||
| + (pts[i][B] - p0[B]) * u[B]; | |||
| pts[i][Y] = (pts[i][R] - p0[R]) * v[R] | |||
| + (pts[i][G] - p0[G]) * v[G] | |||
| + (pts[i][B] - p0[B]) * v[B]; | |||
| } | |||
| /* Find the leftmost point */ | |||
| int left = -1; | |||
| tmp = 10.; | |||
| for(i = 0; i < npts; i++) | |||
| if(pts[i][X] < tmp) | |||
| { | |||
| left = i; | |||
| tmp = pts[i][X]; | |||
| } | |||
| SWAP(pts[0], pts[left]); | |||
| /* Sort the remaining points radially around pts[0]. Bubble sort | |||
| * is okay for small sizes, I don't care. */ | |||
| for(i = 1; i < npts; i++) | |||
| for(j = 1; j < npts - i; j++) | |||
| { | |||
| double k1 = (pts[j][X] - pts[0][X]) | |||
| * (pts[j + 1][Y] - pts[0][Y]); | |||
| double k2 = (pts[j + 1][X] - pts[0][X]) | |||
| * (pts[j][Y] - pts[0][Y]); | |||
| if(k1 < k2 - EPSILON) | |||
| SWAP(pts[j], pts[j + 1]); | |||
| else if(k1 < k2 + EPSILON) | |||
| { | |||
| /* Aligned! keep the farthest point */ | |||
| double ax = pts[j][X] - pts[0][X]; | |||
| double ay = pts[j][Y] - pts[0][Y]; | |||
| double bx = pts[j + 1][X] - pts[0][X]; | |||
| double by = pts[j + 1][Y] - pts[0][Y]; | |||
| if(ax * ax + ay * ay > bx * bx + by * by) | |||
| SWAP(pts[j], pts[j + 1]); | |||
| } | |||
| } | |||
| /* Remove points not in the convex hull */ | |||
| for(i = 2; i < npts; /* */) | |||
| { | |||
| if(i < 2) | |||
| { | |||
| i++; | |||
| continue; | |||
| } | |||
| double k1 = (pts[i - 1][X] - pts[i - 2][X]) | |||
| * (pts[i][Y] - pts[i - 2][Y]); | |||
| double k2 = (pts[i][X] - pts[i - 2][X]) | |||
| * (pts[i - 1][Y] - pts[i - 2][Y]); | |||
| if(k1 <= k2 + EPSILON) | |||
| { | |||
| for(j = i - 1; j < npts - 1; j++) | |||
| SWAP(pts[j], pts[j + 1]); | |||
| npts--; | |||
| } | |||
| else | |||
| i++; | |||
| } | |||
| /* FIXME: check the last point */ | |||
| for(i = 0; i < npts; i++) | |||
| debug(" 2D pt[%i] (%g,%g)\n", i, pts[i][X], pts[i][Y]); | |||
| /* Compute the barycentre coordinates */ | |||
| double ctx = 0., cty = 0., weight = 0.; | |||
| for(i = 2; i < npts; i++) | |||
| { | |||
| double abx = pts[i - 1][X] - pts[0][X]; | |||
| double aby = pts[i - 1][Y] - pts[0][Y]; | |||
| double acx = pts[i][X] - pts[0][X]; | |||
| double acy = pts[i][Y] - pts[0][Y]; | |||
| double sqarea = (abx * abx + aby * aby) * (acx * acx + acy * acy) | |||
| - (abx * acx + aby * acy) * (abx * acx + aby * acy); | |||
| if(sqarea <= 0.) | |||
| continue; | |||
| double area = sqrt(sqarea); | |||
| ctx += area * (abx + acx) / 3; | |||
| cty += area * (aby + acy) / 3; | |||
| weight += area; | |||
| } | |||
| if(weight > EPSILON) | |||
| { | |||
| ctx = pts[0][X] + ctx / weight; | |||
| cty = pts[0][Y] + cty / weight; | |||
| } | |||
| else | |||
| { | |||
| int right = -1; | |||
| tmp = -10.; | |||
| for(i = 0; i < npts; i++) | |||
| if(pts[i][X] > tmp) | |||
| { | |||
| right = i; | |||
| tmp = pts[i][X]; | |||
| } | |||
| ctx = 0.5 * (pts[0][X] + pts[right][X]); | |||
| cty = 0.5 * (pts[0][Y] + pts[right][Y]); | |||
| } | |||
| debug(" 2D bary (%g,%g)\n", ctx, cty); | |||
| /* | |||
| * 3.3. Store the barycentre and convex hull information. | |||
| */ | |||
| ret->bary[n][R] = p0[R] + ctx * u[R] + cty * v[R]; | |||
| ret->bary[n][G] = p0[G] + ctx * u[G] + cty * v[G]; | |||
| ret->bary[n][B] = p0[B] + ctx * u[B] + cty * v[B]; | |||
| for(i = 0; i < npts; i++) | |||
| { | |||
| ret->pts[n][i][R] = pts[i][R]; | |||
| ret->pts[n][i][G] = pts[i][G]; | |||
| ret->pts[n][i][B] = pts[i][B]; | |||
| ret->pts[n][i][X] = pts[i][X] - ctx; | |||
| ret->pts[n][i][Y] = pts[i][Y] - cty; | |||
| ret->pts[n][i][A] = atan2(pts[i][Y] - cty, pts[i][X] - ctx); | |||
| debug(" 3D pt[%i] (%g,%g,%g) angle %g\n", | |||
| i, pts[i][R], pts[i][G], pts[i][B], ret->pts[n][i][A]); | |||
| } | |||
| ret->hullsize[n] = npts; | |||
| debug(" 3D bary (%g,%g,%g)\n", | |||
| ret->bary[n][R], ret->bary[n][G], ret->bary[n][B]); | |||
| } | |||
| return ret; | |||
| } | |||
| int main(int argc, char *argv[]) | |||
| { | |||
| static double const rgbpal[] = | |||
| { | |||
| 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, | |||
| 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, | |||
| }; | |||
| static double const mypal[] = | |||
| { | |||
| 0.900, 0.001, 0.001, /* red */ | |||
| @@ -343,142 +20,8 @@ int main(int argc, char *argv[]) | |||
| 0.800, 0.400, 0.001, /* orange */ | |||
| }; | |||
| int i, j; | |||
| init_uv(); | |||
| hull_t *rgbhull = compute_hull(8, rgbpal); | |||
| hull_t *myhull = compute_hull(6, mypal); | |||
| /* | |||
| * 4. Load image and change its palette. | |||
| */ | |||
| debug("\n### PROCESSING IMAGE ###\n\n"); | |||
| pipi_image_t *src = pipi_load(argv[1]); | |||
| pipi_pixels_t *srcp = pipi_getpixels(src, PIPI_PIXELS_RGBA_F); | |||
| float *srcdata = (float *)srcp->pixels; | |||
| int w = srcp->w, h = srcp->h; | |||
| pipi_image_t *dst = pipi_new(w, h); | |||
| pipi_pixels_t *dstp = pipi_getpixels(dst, PIPI_PIXELS_RGBA_F); | |||
| float *dstdata = (float *)dstp->pixels; | |||
| for(j = 0; j < h; j++) | |||
| for(i = 0; i < w; i++) | |||
| { | |||
| double p[3]; | |||
| /* FIXME: Imlib fucks up the RGB order. */ | |||
| p[B] = srcdata[4 * (j * w + i)]; | |||
| p[G] = srcdata[4 * (j * w + i) + 1]; | |||
| p[R] = srcdata[4 * (j * w + i) + 2]; | |||
| debug("Pixel +%i+%i (%g,%g,%g)\n", i, j, p[R], p[G], p[B]); | |||
| int slice = (int)(BRIGHT(p) * STEPS + 0.5); | |||
| debug(" slice %i\n", slice); | |||
| /* Convert to 2D. The origin is the slice's barycentre. */ | |||
| double xp = (p[R] - rgbhull->bary[slice][R]) * u[R] | |||
| + (p[G] - rgbhull->bary[slice][G]) * u[G] | |||
| + (p[B] - rgbhull->bary[slice][B]) * u[B]; | |||
| double yp = (p[R] - rgbhull->bary[slice][R]) * v[R] | |||
| + (p[G] - rgbhull->bary[slice][G]) * v[G] | |||
| + (p[B] - rgbhull->bary[slice][B]) * v[B]; | |||
| debug(" 2D pt (%g,%g)\n", xp, yp); | |||
| /* 1. find the excentricity in RGB space. There is an easier | |||
| * way to do this, which is to find the intersection of our | |||
| * line with the RGB cube itself, but we'd lose the possibility | |||
| * of having an original colour space other than RGB. */ | |||
| /* First, find the relevant triangle. */ | |||
| int n, count = rgbhull->hullsize[slice]; | |||
| double angle = atan2(yp, xp); | |||
| for(n = 0; n < count; n++) | |||
| { | |||
| double a1 = rgbhull->pts[slice][n][A]; | |||
| double a2 = rgbhull->pts[slice][(n + 1) % count][A]; | |||
| if(a1 > a2) | |||
| { | |||
| if(angle >= a1) | |||
| a2 += 2 * M_PI; | |||
| else | |||
| a1 -= 2 * M_PI; | |||
| } | |||
| if(angle >= a1 && angle <= a2) | |||
| break; | |||
| } | |||
| /* Now compute the distance to the triangle's edge. If the edge | |||
| * intersection is M, then t is such as P = t.M (can be zero) */ | |||
| double xa = rgbhull->pts[slice][n % count][X]; | |||
| double ya = rgbhull->pts[slice][n % count][Y]; | |||
| double xb = rgbhull->pts[slice][(n + 1) % count][X]; | |||
| double yb = rgbhull->pts[slice][(n + 1) % count][Y]; | |||
| double t = (xp * (yb - ya) - yp * (xb - xa)) / (xa * yb - xb * ya); | |||
| if(t > 1.0) | |||
| t = 1.0; | |||
| debug(" best RGB %g (%g,%g) (%g,%g)\n", t, xa, ya, xb, yb); | |||
| /* 2. apply the excentricity in reduced space. */ | |||
| count = myhull->hullsize[slice]; | |||
| for(n = 0; n < count; n++) | |||
| { | |||
| double a1 = myhull->pts[slice][n][A]; | |||
| double a2 = myhull->pts[slice][(n + 1) % count][A]; | |||
| if(a1 > a2) | |||
| { | |||
| if(angle >= a1) | |||
| a2 += 2 * M_PI; | |||
| else | |||
| a1 -= 2 * M_PI; | |||
| } | |||
| if(angle >= a1 && angle <= a2) | |||
| break; | |||
| } | |||
| /* If the edge intersection is M', s is such as P = s.M'. We | |||
| * want P' = t.M' = t.P/s */ | |||
| xa = myhull->pts[slice][n % count][X]; | |||
| ya = myhull->pts[slice][n % count][Y]; | |||
| xb = myhull->pts[slice][(n + 1) % count][X]; | |||
| yb = myhull->pts[slice][(n + 1) % count][Y]; | |||
| double s = (xp * (yb - ya) - yp * (xb - xa)) / (xa * yb - xb * ya); | |||
| debug(" best custom %g (%g,%g) (%g,%g)\n", s, xa, ya, xb, yb); | |||
| if(s > 0) | |||
| { | |||
| xp *= t / s; | |||
| yp *= t / s; | |||
| } | |||
| p[R] = myhull->bary[slice][R] + xp * u[R] + yp * v[R]; | |||
| p[G] = myhull->bary[slice][G] + xp * u[G] + yp * v[G]; | |||
| p[B] = myhull->bary[slice][B] + xp * u[B] + yp * v[B]; | |||
| /* Clipping should not be necessary, but the above code | |||
| * is unfortunately not perfect. */ | |||
| if(p[R] < 0.0) p[R] = 0.0; else if(p[R] > 1.0) p[R] = 1.0; | |||
| if(p[G] < 0.0) p[G] = 0.0; else if(p[G] > 1.0) p[G] = 1.0; | |||
| if(p[B] < 0.0) p[B] = 0.0; else if(p[B] > 1.0) p[B] = 1.0; | |||
| dstdata[4 * (j * w + i)] = p[B]; | |||
| dstdata[4 * (j * w + i) + 1] = p[G]; | |||
| dstdata[4 * (j * w + i) + 2] = p[R]; | |||
| } | |||
| free(rgbhull); | |||
| free(myhull); | |||
| pipi_image_t *dst = pipi_reduce(src, 6, mypal); | |||
| pipi_save(dst, argv[2]); | |||
| return 0; | |||
| @@ -27,6 +27,7 @@ libpipi_la_SOURCES = \ | |||
| $(paint_sources) \ | |||
| $(combine_sources) \ | |||
| $(filter_sources) \ | |||
| $(quantize_sources) \ | |||
| $(dither_sources) \ | |||
| $(NULL) | |||
| libpipi_la_CFLAGS = $(codec_cflags) | |||
| @@ -55,6 +56,9 @@ filter_sources = \ | |||
| filter/convolution.c filter/convolution_template.h \ | |||
| filter/color.c | |||
| quantize_sources = \ | |||
| quantize/reduce.c | |||
| dither_sources = \ | |||
| dither/floydsteinberg.c \ | |||
| dither/jajuni.c \ | |||
| @@ -131,6 +131,8 @@ extern pipi_image_t *pipi_tile(pipi_image_t *, int, int); | |||
| extern int pipi_flood_fill(pipi_image_t *, | |||
| int, int, float, float, float, float); | |||
| extern pipi_image_t *pipi_reduce(pipi_image_t *, int, double const *); | |||
| extern pipi_image_t *pipi_dither_floydsteinberg(pipi_image_t *, pipi_scan_t); | |||
| extern pipi_image_t *pipi_dither_jajuni(pipi_image_t *, pipi_scan_t); | |||
| extern pipi_image_t *pipi_dither_ordered(pipi_image_t *, pipi_image_t *); | |||
| @@ -0,0 +1,492 @@ | |||
| /* | |||
| * libpipi Proper image processing implementation library | |||
| * Copyright (c) 2004-2008 Sam Hocevar <sam@zoy.org> | |||
| * All Rights Reserved | |||
| * | |||
| * $Id$ | |||
| * | |||
| * This library is free software. It comes without any warranty, to | |||
| * the extent permitted by applicable law. You can redistribute it | |||
| * and/or modify it under the terms of the Do What The Fuck You Want | |||
| * To Public License, Version 2, as published by Sam Hocevar. See | |||
| * http://sam.zoy.org/wtfpl/COPYING for more details. | |||
| */ | |||
| /* | |||
| * reduce.c: palette reduction routines | |||
| */ | |||
| #include "config.h" | |||
| #include "common.h" | |||
| #include <stdio.h> | |||
| #include <stdlib.h> | |||
| #include <string.h> | |||
| #include <math.h> | |||
| #include <pipi.h> | |||
| #define R 0 | |||
| #define G 1 | |||
| #define B 2 | |||
| #define X 3 | |||
| #define Y 4 | |||
| #define A 5 | |||
| //#define debug printf | |||
| #define debug(...) /* */ | |||
| #define BRIGHT(x) (0.299*(x)[0] + 0.587*(x)[1] + 0.114*(x)[2]) | |||
| #define MAXCOLORS 16 | |||
| #define STEPS 1024 | |||
| #define EPSILON (0.000001) | |||
| typedef struct | |||
| { | |||
| double pts[STEPS + 1][MAXCOLORS * (MAXCOLORS - 1) / 2][6]; | |||
| int hullsize[STEPS + 1]; | |||
| double bary[STEPS + 1][3]; | |||
| } | |||
| hull_t; | |||
| static double const y[3] = { .299, .587, .114 }; | |||
| static double u[3], v[3]; | |||
| static int ylen; | |||
| /* | |||
| * Find two base vectors for the chrominance planes. | |||
| */ | |||
| static void init_uv(void) | |||
| { | |||
| double tmp; | |||
| ylen = sqrt(y[R] * y[R] + y[G] * y[G] + y[B] * y[B]); | |||
| u[R] = y[1]; | |||
| u[G] = -y[0]; | |||
| u[B] = 0; | |||
| tmp = sqrt(u[R] * u[R] + u[G] * u[G] + u[B] * u[B]); | |||
| u[R] /= tmp; u[G] /= tmp; u[B] /= tmp; | |||
| v[R] = y[G] * u[B] - y[B] * u[G]; | |||
| v[G] = y[B] * u[R] - y[R] * u[B]; | |||
| v[B] = y[R] * u[G] - y[G] * u[R]; | |||
| tmp = sqrt(v[R] * v[R] + v[G] * v[G] + v[B] * v[B]); | |||
| v[R] /= tmp; v[G] /= tmp; v[B] /= tmp; | |||
| } | |||
| /* | |||
| * Compute the convex hull of a given palette. | |||
| */ | |||
| static hull_t *compute_hull(int ncolors, double const *palette) | |||
| { | |||
| hull_t *ret = malloc(sizeof(hull_t)); | |||
| double tmp; | |||
| int i, j; | |||
| debug("\n### NEW HULL ###\n\n"); | |||
| debug("Analysing %i colors\n", ncolors); | |||
| double pal[ncolors][3]; | |||
| for(i = 0; i < ncolors; i++) | |||
| { | |||
| pal[i][R] = palette[i * 3]; | |||
| pal[i][G] = palette[i * 3 + 1]; | |||
| pal[i][B] = palette[i * 3 + 2]; | |||
| debug(" [%i] (%g,%g,%g)\n", i, pal[i][R], pal[i][G], pal[i][B]); | |||
| } | |||
| /* | |||
| * 1. Find the darkest and lightest colours | |||
| */ | |||
| double *dark = NULL, *light = NULL; | |||
| double min = 1.0, max = 0.0; | |||
| for(i = 0; i < ncolors; i++) | |||
| { | |||
| double p = BRIGHT(pal[i]); | |||
| if(p < min) | |||
| { | |||
| dark = pal[i]; | |||
| min = p; | |||
| } | |||
| if(p > max) | |||
| { | |||
| light = pal[i]; | |||
| max = p; | |||
| } | |||
| } | |||
| double gray[3]; | |||
| gray[R] = light[R] - dark[R]; | |||
| gray[G] = light[G] - dark[G]; | |||
| gray[B] = light[B] - dark[B]; | |||
| debug(" gray axis (%g,%g,%g) - (%g,%g,%g)\n", | |||
| dark[R], dark[G], dark[B], light[R], light[G], light[B]); | |||
| /* | |||
| * 3. Browse the grey axis and do stuff | |||
| */ | |||
| int n; | |||
| for(n = 0; n <= STEPS; n++) | |||
| { | |||
| double pts[ncolors * (ncolors - 1) / 2][5]; | |||
| double ptmp[5]; | |||
| #define SWAP(p1,p2) do { memcpy(ptmp, p1, sizeof(ptmp)); \ | |||
| memcpy(p1, p2, sizeof(ptmp)); \ | |||
| memcpy(p2, ptmp, sizeof(ptmp)); } while(0) | |||
| double t = n * 1.0 / STEPS; | |||
| int npts = 0; | |||
| debug("Slice %i/%i\n", n, STEPS); | |||
| double p0[3]; | |||
| p0[R] = dark[R] + t * gray[R]; | |||
| p0[G] = dark[G] + t * gray[G]; | |||
| p0[B] = dark[B] + t * gray[B]; | |||
| debug(" 3D gray (%g,%g,%g)\n", p0[R], p0[G], p0[B]); | |||
| /* | |||
| * 3.1. Find all edges that intersect the t.y + (u,v) plane | |||
| */ | |||
| for(i = 0; i < ncolors; i++) | |||
| { | |||
| double k1[3]; | |||
| k1[R] = pal[i][R] - p0[R]; | |||
| k1[G] = pal[i][G] - p0[G]; | |||
| k1[B] = pal[i][B] - p0[B]; | |||
| tmp = sqrt(k1[R] * k1[R] + k1[G] * k1[G] + k1[B] * k1[B]); | |||
| /* If k1.y > t.y.y, we don't want this point */ | |||
| double yk1 = y[R] * k1[R] + y[G] * k1[G] + y[B] * k1[B]; | |||
| if(yk1 > t * ylen * ylen + EPSILON) | |||
| continue; | |||
| for(j = 0; j < ncolors; j++) | |||
| { | |||
| if(i == j) | |||
| continue; | |||
| double k2[3]; | |||
| k2[R] = pal[j][R] - p0[R]; | |||
| k2[G] = pal[j][G] - p0[G]; | |||
| k2[B] = pal[j][B] - p0[B]; | |||
| tmp = sqrt(k2[R] * k2[R] + k2[G] * k2[G] + k2[B] * k2[B]); | |||
| /* If k2.y < t.y.y, we don't want this point */ | |||
| double yk2 = y[R] * k2[R] + y[G] * k2[G] + y[B] * k2[B]; | |||
| if(yk2 < t * ylen * ylen - EPSILON) | |||
| continue; | |||
| if(yk2 < yk1) | |||
| continue; | |||
| double s = yk1 == yk2 ? | |||
| 0.5 : (t * ylen * ylen - yk1) / (yk2 - yk1); | |||
| pts[npts][R] = p0[R] + k1[R] + s * (k2[R] - k1[R]); | |||
| pts[npts][G] = p0[G] + k1[G] + s * (k2[G] - k1[G]); | |||
| pts[npts][B] = p0[B] + k1[B] + s * (k2[B] - k1[B]); | |||
| npts++; | |||
| } | |||
| } | |||
| /* | |||
| * 3.2. Find the barycentre of these points' convex hull. We use | |||
| * the Graham Scan technique. | |||
| */ | |||
| /* Make our problem a 2-D problem. */ | |||
| for(i = 0; i < npts; i++) | |||
| { | |||
| pts[i][X] = (pts[i][R] - p0[R]) * u[R] | |||
| + (pts[i][G] - p0[G]) * u[G] | |||
| + (pts[i][B] - p0[B]) * u[B]; | |||
| pts[i][Y] = (pts[i][R] - p0[R]) * v[R] | |||
| + (pts[i][G] - p0[G]) * v[G] | |||
| + (pts[i][B] - p0[B]) * v[B]; | |||
| } | |||
| /* Find the leftmost point */ | |||
| int left = -1; | |||
| tmp = 10.; | |||
| for(i = 0; i < npts; i++) | |||
| if(pts[i][X] < tmp) | |||
| { | |||
| left = i; | |||
| tmp = pts[i][X]; | |||
| } | |||
| SWAP(pts[0], pts[left]); | |||
| /* Sort the remaining points radially around pts[0]. Bubble sort | |||
| * is okay for small sizes, I don't care. */ | |||
| for(i = 1; i < npts; i++) | |||
| for(j = 1; j < npts - i; j++) | |||
| { | |||
| double k1 = (pts[j][X] - pts[0][X]) | |||
| * (pts[j + 1][Y] - pts[0][Y]); | |||
| double k2 = (pts[j + 1][X] - pts[0][X]) | |||
| * (pts[j][Y] - pts[0][Y]); | |||
| if(k1 < k2 - EPSILON) | |||
| SWAP(pts[j], pts[j + 1]); | |||
| else if(k1 < k2 + EPSILON) | |||
| { | |||
| /* Aligned! keep the farthest point */ | |||
| double ax = pts[j][X] - pts[0][X]; | |||
| double ay = pts[j][Y] - pts[0][Y]; | |||
| double bx = pts[j + 1][X] - pts[0][X]; | |||
| double by = pts[j + 1][Y] - pts[0][Y]; | |||
| if(ax * ax + ay * ay > bx * bx + by * by) | |||
| SWAP(pts[j], pts[j + 1]); | |||
| } | |||
| } | |||
| /* Remove points not in the convex hull */ | |||
| for(i = 2; i < npts; /* */) | |||
| { | |||
| if(i < 2) | |||
| { | |||
| i++; | |||
| continue; | |||
| } | |||
| double k1 = (pts[i - 1][X] - pts[i - 2][X]) | |||
| * (pts[i][Y] - pts[i - 2][Y]); | |||
| double k2 = (pts[i][X] - pts[i - 2][X]) | |||
| * (pts[i - 1][Y] - pts[i - 2][Y]); | |||
| if(k1 <= k2 + EPSILON) | |||
| { | |||
| for(j = i - 1; j < npts - 1; j++) | |||
| SWAP(pts[j], pts[j + 1]); | |||
| npts--; | |||
| } | |||
| else | |||
| i++; | |||
| } | |||
| /* FIXME: check the last point */ | |||
| for(i = 0; i < npts; i++) | |||
| debug(" 2D pt[%i] (%g,%g)\n", i, pts[i][X], pts[i][Y]); | |||
| /* Compute the barycentre coordinates */ | |||
| double ctx = 0., cty = 0., weight = 0.; | |||
| for(i = 2; i < npts; i++) | |||
| { | |||
| double abx = pts[i - 1][X] - pts[0][X]; | |||
| double aby = pts[i - 1][Y] - pts[0][Y]; | |||
| double acx = pts[i][X] - pts[0][X]; | |||
| double acy = pts[i][Y] - pts[0][Y]; | |||
| double sqarea = (abx * abx + aby * aby) * (acx * acx + acy * acy) | |||
| - (abx * acx + aby * acy) * (abx * acx + aby * acy); | |||
| if(sqarea <= 0.) | |||
| continue; | |||
| double area = sqrt(sqarea); | |||
| ctx += area * (abx + acx) / 3; | |||
| cty += area * (aby + acy) / 3; | |||
| weight += area; | |||
| } | |||
| if(weight > EPSILON) | |||
| { | |||
| ctx = pts[0][X] + ctx / weight; | |||
| cty = pts[0][Y] + cty / weight; | |||
| } | |||
| else | |||
| { | |||
| int right = -1; | |||
| tmp = -10.; | |||
| for(i = 0; i < npts; i++) | |||
| if(pts[i][X] > tmp) | |||
| { | |||
| right = i; | |||
| tmp = pts[i][X]; | |||
| } | |||
| ctx = 0.5 * (pts[0][X] + pts[right][X]); | |||
| cty = 0.5 * (pts[0][Y] + pts[right][Y]); | |||
| } | |||
| debug(" 2D bary (%g,%g)\n", ctx, cty); | |||
| /* | |||
| * 3.3. Store the barycentre and convex hull information. | |||
| */ | |||
| ret->bary[n][R] = p0[R] + ctx * u[R] + cty * v[R]; | |||
| ret->bary[n][G] = p0[G] + ctx * u[G] + cty * v[G]; | |||
| ret->bary[n][B] = p0[B] + ctx * u[B] + cty * v[B]; | |||
| for(i = 0; i < npts; i++) | |||
| { | |||
| ret->pts[n][i][R] = pts[i][R]; | |||
| ret->pts[n][i][G] = pts[i][G]; | |||
| ret->pts[n][i][B] = pts[i][B]; | |||
| ret->pts[n][i][X] = pts[i][X] - ctx; | |||
| ret->pts[n][i][Y] = pts[i][Y] - cty; | |||
| ret->pts[n][i][A] = atan2(pts[i][Y] - cty, pts[i][X] - ctx); | |||
| debug(" 3D pt[%i] (%g,%g,%g) angle %g\n", | |||
| i, pts[i][R], pts[i][G], pts[i][B], ret->pts[n][i][A]); | |||
| } | |||
| ret->hullsize[n] = npts; | |||
| debug(" 3D bary (%g,%g,%g)\n", | |||
| ret->bary[n][R], ret->bary[n][G], ret->bary[n][B]); | |||
| } | |||
| return ret; | |||
| } | |||
| pipi_image_t *pipi_reduce(pipi_image_t *src, | |||
| int ncolors, double const *palette) | |||
| { | |||
| static double const rgbpal[] = | |||
| { | |||
| 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, | |||
| 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, | |||
| }; | |||
| int i, j; | |||
| init_uv(); | |||
| hull_t *rgbhull = compute_hull(8, rgbpal); | |||
| hull_t *myhull = compute_hull(ncolors, palette); | |||
| /* | |||
| * 4. Load image and change its palette. | |||
| */ | |||
| debug("\n### PROCESSING IMAGE ###\n\n"); | |||
| pipi_pixels_t *srcp = pipi_getpixels(src, PIPI_PIXELS_RGBA_F); | |||
| float *srcdata = (float *)srcp->pixels; | |||
| int w = srcp->w, h = srcp->h; | |||
| pipi_image_t *dst = pipi_new(w, h); | |||
| pipi_pixels_t *dstp = pipi_getpixels(dst, PIPI_PIXELS_RGBA_F); | |||
| float *dstdata = (float *)dstp->pixels; | |||
| for(j = 0; j < h; j++) | |||
| for(i = 0; i < w; i++) | |||
| { | |||
| double p[3]; | |||
| /* FIXME: Imlib fucks up the RGB order. */ | |||
| p[B] = srcdata[4 * (j * w + i)]; | |||
| p[G] = srcdata[4 * (j * w + i) + 1]; | |||
| p[R] = srcdata[4 * (j * w + i) + 2]; | |||
| debug("Pixel +%i+%i (%g,%g,%g)\n", i, j, p[R], p[G], p[B]); | |||
| int slice = (int)(BRIGHT(p) * STEPS + 0.5); | |||
| debug(" slice %i\n", slice); | |||
| /* Convert to 2D. The origin is the slice's barycentre. */ | |||
| double xp = (p[R] - rgbhull->bary[slice][R]) * u[R] | |||
| + (p[G] - rgbhull->bary[slice][G]) * u[G] | |||
| + (p[B] - rgbhull->bary[slice][B]) * u[B]; | |||
| double yp = (p[R] - rgbhull->bary[slice][R]) * v[R] | |||
| + (p[G] - rgbhull->bary[slice][G]) * v[G] | |||
| + (p[B] - rgbhull->bary[slice][B]) * v[B]; | |||
| debug(" 2D pt (%g,%g)\n", xp, yp); | |||
| /* 1. find the excentricity in RGB space. There is an easier | |||
| * way to do this, which is to find the intersection of our | |||
| * line with the RGB cube itself, but we'd lose the possibility | |||
| * of having an original colour space other than RGB. */ | |||
| /* First, find the relevant triangle. */ | |||
| int n, count = rgbhull->hullsize[slice]; | |||
| double angle = atan2(yp, xp); | |||
| for(n = 0; n < count; n++) | |||
| { | |||
| double a1 = rgbhull->pts[slice][n][A]; | |||
| double a2 = rgbhull->pts[slice][(n + 1) % count][A]; | |||
| if(a1 > a2) | |||
| { | |||
| if(angle >= a1) | |||
| a2 += 2 * M_PI; | |||
| else | |||
| a1 -= 2 * M_PI; | |||
| } | |||
| if(angle >= a1 && angle <= a2) | |||
| break; | |||
| } | |||
| /* Now compute the distance to the triangle's edge. If the edge | |||
| * intersection is M, then t is such as P = t.M (can be zero) */ | |||
| double xa = rgbhull->pts[slice][n % count][X]; | |||
| double ya = rgbhull->pts[slice][n % count][Y]; | |||
| double xb = rgbhull->pts[slice][(n + 1) % count][X]; | |||
| double yb = rgbhull->pts[slice][(n + 1) % count][Y]; | |||
| double t = (xp * (yb - ya) - yp * (xb - xa)) / (xa * yb - xb * ya); | |||
| if(t > 1.0) | |||
| t = 1.0; | |||
| debug(" best RGB %g (%g,%g) (%g,%g)\n", t, xa, ya, xb, yb); | |||
| /* 2. apply the excentricity in reduced space. */ | |||
| count = myhull->hullsize[slice]; | |||
| for(n = 0; n < count; n++) | |||
| { | |||
| double a1 = myhull->pts[slice][n][A]; | |||
| double a2 = myhull->pts[slice][(n + 1) % count][A]; | |||
| if(a1 > a2) | |||
| { | |||
| if(angle >= a1) | |||
| a2 += 2 * M_PI; | |||
| else | |||
| a1 -= 2 * M_PI; | |||
| } | |||
| if(angle >= a1 && angle <= a2) | |||
| break; | |||
| } | |||
| /* If the edge intersection is M', s is such as P = s.M'. We | |||
| * want P' = t.M' = t.P/s */ | |||
| xa = myhull->pts[slice][n % count][X]; | |||
| ya = myhull->pts[slice][n % count][Y]; | |||
| xb = myhull->pts[slice][(n + 1) % count][X]; | |||
| yb = myhull->pts[slice][(n + 1) % count][Y]; | |||
| double s = (xp * (yb - ya) - yp * (xb - xa)) / (xa * yb - xb * ya); | |||
| debug(" best custom %g (%g,%g) (%g,%g)\n", s, xa, ya, xb, yb); | |||
| if(s > 0) | |||
| { | |||
| xp *= t / s; | |||
| yp *= t / s; | |||
| } | |||
| p[R] = myhull->bary[slice][R] + xp * u[R] + yp * v[R]; | |||
| p[G] = myhull->bary[slice][G] + xp * u[G] + yp * v[G]; | |||
| p[B] = myhull->bary[slice][B] + xp * u[B] + yp * v[B]; | |||
| /* Clipping should not be necessary, but the above code | |||
| * is unfortunately not perfect. */ | |||
| if(p[R] < 0.0) p[R] = 0.0; else if(p[R] > 1.0) p[R] = 1.0; | |||
| if(p[G] < 0.0) p[G] = 0.0; else if(p[G] > 1.0) p[G] = 1.0; | |||
| if(p[B] < 0.0) p[B] = 0.0; else if(p[B] > 1.0) p[B] = 1.0; | |||
| dstdata[4 * (j * w + i)] = p[B]; | |||
| dstdata[4 * (j * w + i) + 1] = p[G]; | |||
| dstdata[4 * (j * w + i) + 2] = p[R]; | |||
| } | |||
| free(rgbhull); | |||
| free(myhull); | |||
| return dst; | |||
| } | |||