|
- #include "config.h"
-
- #include <stdio.h>
- #include <stdlib.h>
- #include <string.h>
- #include <math.h>
-
- #include <CGAL/Exact_predicates_inexact_constructions_kernel.h>
- #include <CGAL/Delaunay_triangulation_2.h>
- #include <CGAL/natural_neighbor_coordinates_2.h>
-
- #include <pipi.h>
-
- /*
- * User-definable settings.
- */
-
- /* The maximum message length */
- #define MAX_MSG_LEN 140
-
- /* The number of characters at disposal */
- //#define NUM_CHARACTERS 0x7fffffff // The sky's the limit
- //#define NUM_CHARACTERS 1111998 // Full valid Unicode set
- //#define NUM_CHARACTERS 100507 // Full graphic Unicode
- #define NUM_CHARACTERS 32768 // Chinese characters
- //#define NUM_CHARACTERS 127 // ASCII
-
- /* The maximum image size we want to support */
- #define MAX_W 4000
- #define MAX_H 4000
-
- /* How does the algorithm work: one point per cell, or two */
- #define POINTS_PER_CELL 2
-
- /* The range value for point parameters: X Y, red/green/blue, "strength"
- * Tested values (on Mona Lisa) are:
- * 16 16 5 5 5 2 -> 0.06511725914
- * 16 16 6 7 6 1 -> 0.05731491348 *
- * 16 16 7 6 6 1 -> 0.06450513783
- * 14 14 7 7 6 1 -> 0.0637207893
- * 19 19 6 6 5 1 -> 0.06801999094 */
- static unsigned int RANGE_X = 16;
- static unsigned int RANGE_Y = 16;
- static unsigned int RANGE_R = 6;
- static unsigned int RANGE_G = 6;
- static unsigned int RANGE_B = 6;
- static unsigned int RANGE_S = 1;
-
- /*
- * These values are computed at runtime
- */
-
- static float TOTAL_BITS;
- static float HEADER_BITS;
- static float DATA_BITS;
- static float POINT_BITS;
-
- static unsigned int TOTAL_CELLS;
-
- #define RANGE_SY (RANGE_S*RANGE_Y)
- #define RANGE_SYX (RANGE_S*RANGE_Y*RANGE_X)
- #define RANGE_SYXR (RANGE_S*RANGE_Y*RANGE_X*RANGE_R)
- #define RANGE_SYXRG (RANGE_S*RANGE_Y*RANGE_X*RANGE_R*RANGE_G)
- #define RANGE_SYXRGB (RANGE_S*RANGE_Y*RANGE_X*RANGE_R*RANGE_G*RANGE_B)
-
- struct K : CGAL::Exact_predicates_inexact_constructions_kernel {};
- typedef CGAL::Delaunay_triangulation_2<K> Delaunay_triangulation;
- typedef std::vector<std::pair<K::Point_2, K::FT> > Point_coordinate_vector;
-
- /* Global aspect ratio */
- static unsigned int dw, dh;
-
- /* Global point encoding */
- static uint32_t points[1024];
- static int npoints = 0;
-
- /* Global triangulation */
- static Delaunay_triangulation dt;
-
- static unsigned int det_rand(unsigned int mod)
- {
- static unsigned long next = 1;
- next = next * 1103515245 + 12345;
- return ((unsigned)(next / 65536) % 32768) % mod;
- }
-
- static inline int range2int(float val, int range)
- {
- int ret = (int)(val * ((float)range - 0.0001));
- return ret < 0 ? 0 : ret > range - 1 ? range - 1 : ret;
- }
-
- static inline float int2midrange(int val, int range)
- {
- return (float)(1 + 2 * val) / (float)(2 * range);
- }
-
- static inline float int2fullrange(int val, int range)
- {
- return range > 1 ? (float)val / (float)(range - 1) : 0.0;
- }
-
- static inline void set_point(int index, float x, float y, float r,
- float g, float b, float s)
- {
- int dx = (index / POINTS_PER_CELL) % dw;
- int dy = (index / POINTS_PER_CELL) / dw;
-
- float fx = (x - dx * RANGE_X) / RANGE_X;
- float fy = (y - dy * RANGE_Y) / RANGE_Y;
-
- int is = range2int(s, RANGE_S);
-
- int ix = range2int(fx, RANGE_X);
- int iy = range2int(fy, RANGE_Y);
-
- int ir = range2int(r, RANGE_R);
- int ig = range2int(g, RANGE_G);
- int ib = range2int(b, RANGE_B);
-
- points[index] = is + RANGE_S * (iy + RANGE_Y * (ix + RANGE_X *
- (ib + RANGE_B * (ig + (RANGE_R * ir)))));
- }
-
- static inline void get_point(int index, float *x, float *y, float *r,
- float *g, float *b, float *s)
- {
- uint32_t pt = points[index];
-
- unsigned int dx = (index / POINTS_PER_CELL) % dw;
- unsigned int dy = (index / POINTS_PER_CELL) / dw;
-
- *s = int2fullrange(pt % RANGE_S, RANGE_S); pt /= RANGE_S;
-
- float fy = int2midrange(pt % RANGE_Y, RANGE_Y); pt /= RANGE_Y;
- float fx = int2midrange(pt % RANGE_X, RANGE_X); pt /= RANGE_X;
-
- *x = (fx + dx) * RANGE_X;
- *y = (fy + dy) * RANGE_Y;
-
- *b = int2midrange(pt % RANGE_R, RANGE_R); pt /= RANGE_R;
- *g = int2midrange(pt % RANGE_G, RANGE_G); pt /= RANGE_G;
- *r = int2midrange(pt % RANGE_B, RANGE_B); pt /= RANGE_B;
- }
-
- static inline float clip(float x, int modulo)
- {
- float mul = (float)modulo + 0.9999;
- int round = (int)(x * mul);
- return (float)round / (float)modulo;
- }
-
- static void add_point(float x, float y, float r, float g, float b, float s)
- {
- set_point(npoints, x, y, r, g, b, s);
- npoints++;
- }
-
- static void add_random_point()
- {
- points[npoints] = det_rand(RANGE_SYXRGB);
- npoints++;
- }
-
- #define NB_OPS 20
-
- static uint8_t rand_op(void)
- {
- uint8_t x = det_rand(NB_OPS);
-
- /* Randomly ignore statistically less efficient ops */
- if(x == 0)
- return rand_op();
- if(x == 1 && (RANGE_S == 1 || det_rand(2)))
- return rand_op();
- if(x <= 5 && det_rand(2))
- return rand_op();
- //if((x < 10 || x > 15) && !det_rand(4)) /* Favour colour changes */
- // return rand_op();
-
- return x;
- }
-
- static uint32_t apply_op(uint8_t op, uint32_t val)
- {
- uint32_t rem, ext;
-
- switch(op)
- {
- case 0: /* Flip strength value */
- case 1:
- /* Statistics show that this helps often, but does not reduce
- * the error significantly. */
- return val ^ 1;
- case 2: /* Move up; if impossible, down */
- rem = val % RANGE_S;
- ext = (val / RANGE_S) % RANGE_Y;
- ext = ext > 0 ? ext - 1 : ext + 1;
- return (val / RANGE_SY * RANGE_Y + ext) * RANGE_S + rem;
- case 3: /* Move down; if impossible, up */
- rem = val % RANGE_S;
- ext = (val / RANGE_S) % RANGE_Y;
- ext = ext < RANGE_Y - 1 ? ext + 1 : ext - 1;
- return (val / RANGE_SY * RANGE_Y + ext) * RANGE_S + rem;
- case 4: /* Move left; if impossible, right */
- rem = val % RANGE_SY;
- ext = (val / RANGE_SY) % RANGE_X;
- ext = ext > 0 ? ext - 1 : ext + 1;
- return (val / RANGE_SYX * RANGE_X + ext) * RANGE_SY + rem;
- case 5: /* Move left; if impossible, right */
- rem = val % RANGE_SY;
- ext = (val / RANGE_SY) % RANGE_X;
- ext = ext < RANGE_X - 1 ? ext + 1 : ext - 1;
- return (val / RANGE_SYX * RANGE_X + ext) * RANGE_SY + rem;
- case 6: /* Corner 1 */
- return apply_op(2, apply_op(4, val));
- case 7: /* Corner 2 */
- return apply_op(2, apply_op(5, val));
- case 8: /* Corner 3 */
- return apply_op(3, apply_op(5, val));
- case 9: /* Corner 4 */
- return apply_op(3, apply_op(4, val));
- case 16: /* Double up */
- return apply_op(2, apply_op(2, val));
- case 17: /* Double down */
- return apply_op(3, apply_op(3, val));
- case 18: /* Double left */
- return apply_op(4, apply_op(4, val));
- case 19: /* Double right */
- return apply_op(5, apply_op(5, val));
- case 10: /* R-- (or R++) */
- rem = val % RANGE_SYX;
- ext = (val / RANGE_SYX) % RANGE_R;
- ext = ext > 0 ? ext - 1 : ext + 1;
- return (val / RANGE_SYXR * RANGE_R + ext) * RANGE_SYX + rem;
- case 11: /* R++ (or R--) */
- rem = val % RANGE_SYX;
- ext = (val / RANGE_SYX) % RANGE_R;
- ext = ext < RANGE_R - 1 ? ext + 1 : ext - 1;
- return (val / RANGE_SYXR * RANGE_R + ext) * RANGE_SYX + rem;
- case 12: /* G-- (or G++) */
- rem = val % RANGE_SYXR;
- ext = (val / RANGE_SYXR) % RANGE_G;
- ext = ext > 0 ? ext - 1 : ext + 1;
- return (val / RANGE_SYXRG * RANGE_G + ext) * RANGE_SYXR + rem;
- case 13: /* G++ (or G--) */
- rem = val % RANGE_SYXR;
- ext = (val / RANGE_SYXR) % RANGE_G;
- ext = ext < RANGE_G - 1 ? ext + 1 : ext - 1;
- return (val / RANGE_SYXRG * RANGE_G + ext) * RANGE_SYXR + rem;
- case 14: /* B-- (or B++) */
- rem = val % RANGE_SYXRG;
- ext = (val / RANGE_SYXRG) % RANGE_B;
- ext = ext > 0 ? ext - 1 : ext + 1;
- return ext * RANGE_SYXRG + rem;
- case 15: /* B++ (or B--) */
- rem = val % RANGE_SYXRG;
- ext = (val / RANGE_SYXRG) % RANGE_B;
- ext = ext < RANGE_B - 1 ? ext + 1 : ext - 1;
- return ext * RANGE_SYXRG + rem;
- #if 0
- case 15: /* Brightness-- */
- return apply_op(9, apply_op(11, apply_op(13, val)));
- case 16: /* Brightness++ */
- return apply_op(10, apply_op(12, apply_op(14, val)));
- case 17: /* RG-- */
- return apply_op(9, apply_op(11, val));
- case 18: /* RG++ */
- return apply_op(10, apply_op(12, val));
- case 19: /* GB-- */
- return apply_op(11, apply_op(13, val));
- case 20: /* GB++ */
- return apply_op(12, apply_op(14, val));
- case 21: /* RB-- */
- return apply_op(9, apply_op(13, val));
- case 22: /* RB++ */
- return apply_op(10, apply_op(14, val));
- #endif
- default:
- return val;
- }
- }
-
- static void render(pipi_image_t *dst, int rx, int ry, int rw, int rh)
- {
- uint8_t lookup[TOTAL_CELLS * RANGE_X * RANGE_Y];
- pipi_pixels_t *p = pipi_get_pixels(dst, PIPI_PIXELS_RGBA_F32);
- float *data = (float *)p->pixels;
- int i, x, y;
-
- memset(lookup, 0, sizeof(lookup));
- dt.clear();
- for(i = 0; i < npoints; i++)
- {
- float fx, fy, fr, fg, fb, fs;
- get_point(i, &fx, &fy, &fr, &fg, &fb, &fs);
- lookup[(int)fx + dw * RANGE_X * (int)fy] = i; /* Keep link to point */
- dt.insert(K::Point_2(fx, fy));
- }
-
- /* Add fake points to close the triangulation */
- dt.insert(K::Point_2(-p->w, -p->h));
- dt.insert(K::Point_2(2 * p->w, -p->h));
- dt.insert(K::Point_2(-p->w, 2 * p->h));
- dt.insert(K::Point_2(2 * p->w, 2 * p->h));
-
- for(y = ry; y < ry + rh; y++)
- {
- for(x = rx; x < rx + rw; x++)
- {
- K::Point_2 m(x, y);
- Point_coordinate_vector coords;
- CGAL::Triple<
- std::back_insert_iterator<Point_coordinate_vector>,
- K::FT, bool> result =
- CGAL::natural_neighbor_coordinates_2(dt, m,
- std::back_inserter(coords));
-
- float r = 0.0f, g = 0.0f, b = 0.0f, norm = 0.0f;
-
- Point_coordinate_vector::iterator it;
- for(it = coords.begin(); it != coords.end(); ++it)
- {
- float fx, fy, fr, fg, fb, fs;
-
- fx = (*it).first.x();
- fy = (*it).first.y();
-
- if(fx < 0 || fy < 0 || fx > p->w - 1 || fy > p->h - 1)
- continue;
-
- int index = lookup[(int)fx + dw * RANGE_X * (int)fy];
-
- get_point(index, &fx, &fy, &fr, &fg, &fb, &fs);
-
- //float k = pow((*it).second * (1.0 + fs), 1.2);
- float k = (*it).second * (1.00f + fs);
- //float k = (*it).second * (0.60f + fs);
- //float k = pow((*it).second, (1.0f + fs));
-
- r += k * fr;
- g += k * fg;
- b += k * fb;
- norm += k;
- }
-
- data[4 * (x + y * p->w) + 0] = r / norm;
- data[4 * (x + y * p->w) + 1] = g / norm;
- data[4 * (x + y * p->w) + 2] = b / norm;
- data[4 * (x + y * p->w) + 3] = 0.0;
- }
- }
-
- pipi_release_pixels(dst, p);
- }
-
- static void analyse(pipi_image_t *src)
- {
- pipi_pixels_t *p = pipi_get_pixels(src, PIPI_PIXELS_RGBA_F32);
- float *data = (float *)p->pixels;
-
- for(unsigned int dy = 0; dy < dh; dy++)
- for(unsigned int dx = 0; dx < dw; dx++)
- {
- float min = 1.1f, max = -0.1f;
- float total = 0.0;
- int xmin = 0, xmax = 0, ymin = 0, ymax = 0;
- int npixels = 0;
-
- for(unsigned int iy = RANGE_Y * dy; iy < RANGE_Y * (dy + 1); iy++)
- for(unsigned int ix = RANGE_X * dx; ix < RANGE_X * (dx + 1); ix++)
- {
- float lum = 0.0f;
-
- lum += data[4 * (ix + iy * p->w) + 0];
- lum += data[4 * (ix + iy * p->w) + 1];
- lum += data[4 * (ix + iy * p->w) + 2];
-
- if(lum < min)
- {
- min = lum;
- xmin = ix;
- ymin = iy;
- }
-
- if(lum > max)
- {
- max = lum;
- xmax = ix;
- ymax = iy;
- }
-
- total += lum;
- npixels++;
- }
-
- total /= npixels;
-
- float wmin, wmax;
-
- if(total < min + (max - min) / 4)
- wmin = 1.0, wmax = 0.0;
- else if(total < min + (max - min) / 4 * 3)
- wmin = 0.0, wmax = 0.0;
- else
- wmin = 0.0, wmax = 1.0;
-
- #if 0
- add_random_point();
- add_random_point();
- #else
- #if POINTS_PER_CELL == 1
- if(total < min + (max - min) / 2)
- {
- #endif
- add_point(xmin, ymin,
- data[4 * (xmin + ymin * p->w) + 0],
- data[4 * (xmin + ymin * p->w) + 1],
- data[4 * (xmin + ymin * p->w) + 2],
- wmin);
- #if POINTS_PER_CELL == 1
- }
- else
- {
- #endif
- add_point(xmax, ymax,
- data[4 * (xmax + ymax * p->w) + 0],
- data[4 * (xmax + ymax * p->w) + 1],
- data[4 * (xmax + ymax * p->w) + 2],
- wmax);
- #if POINTS_PER_CELL == 1
- }
- #endif
- #endif
- }
- }
-
- int main(int argc, char *argv[])
- {
- int opstats[2 * NB_OPS];
- pipi_image_t *src, *tmp, *dst;
- double error = 1.0;
- int width, height, ret = 0;
-
- /* Compute bit allocation */
- fprintf(stderr, "Available characters: %i\n", NUM_CHARACTERS);
- fprintf(stderr, "Maximum message size: %i\n", MAX_MSG_LEN);
- TOTAL_BITS = MAX_MSG_LEN * logf(NUM_CHARACTERS) / logf(2);
- fprintf(stderr, "Available bits: %f\n", TOTAL_BITS);
- fprintf(stderr, "Maximum image resolution: %ix%i\n", MAX_W, MAX_H);
- HEADER_BITS = logf(MAX_W * MAX_H) / logf(2);
- fprintf(stderr, "Header bits: %f\n", HEADER_BITS);
- DATA_BITS = TOTAL_BITS - HEADER_BITS;
- fprintf(stderr, "Bits available for data: %f\n", DATA_BITS);
- #if POINTS_PER_CELL == 1
- POINT_BITS = logf(RANGE_SYXRGB) / logf(2);
- #else
- float coord_bits = logf((RANGE_Y * RANGE_X) * (RANGE_Y * RANGE_X + 1) / 2);
- float other_bits = logf(RANGE_R * RANGE_G * RANGE_B * RANGE_S);
- POINT_BITS = (coord_bits + 2 * other_bits) / logf(2);
- #endif
- fprintf(stderr, "Cell bits: %f\n", POINT_BITS);
- TOTAL_CELLS = (int)(DATA_BITS / POINT_BITS);
- fprintf(stderr, "Available cells: %i\n", TOTAL_CELLS);
- fprintf(stderr, "Wasted bits: %f\n", DATA_BITS - POINT_BITS * TOTAL_CELLS);
-
- /* Load image */
- pipi_set_gamma(1.0);
- src = pipi_load(argv[1]);
- width = pipi_get_image_width(src);
- height = pipi_get_image_height(src);
-
- /* Compute best w/h ratio */
- dw = 1; dh = TOTAL_CELLS;
- for(unsigned int i = 1; i <= TOTAL_CELLS; i++)
- {
- int j = TOTAL_CELLS / i;
-
- float r = (float)width / (float)height;
- float ir = (float)i / (float)j;
- float dwr = (float)dw / (float)dh;
-
- if(fabs(logf(r / ir)) < fabs(logf(r / dwr)))
- {
- dw = i;
- dh = TOTAL_CELLS / dw;
- }
- }
- while((dh + 1) * dw <= TOTAL_CELLS) dh++;
- while(dw * (dh + 1) <= TOTAL_CELLS) dw++;
- fprintf(stderr, "Chosen image ratio: %i:%i (wasting %i point cells)\n",
- dw, dh, TOTAL_CELLS - dw * dh);
- fprintf(stderr, "Total wasted bits: %f\n",
- DATA_BITS - POINT_BITS * dw * dh);
-
- /* Resize and filter image to better state */
- tmp = pipi_resize(src, dw * RANGE_X, dh * RANGE_Y);
- pipi_free(src);
- src = pipi_median_ext(tmp, 1, 1);
- pipi_free(tmp);
-
- /* Analyse image */
- analyse(src);
-
- /* Render what we just computed */
- tmp = pipi_new(dw * RANGE_X, dh * RANGE_Y);
- render(tmp, 0, 0, dw * RANGE_X, dh * RANGE_Y);
- error = pipi_measure_rmsd(src, tmp);
-
- fprintf(stderr, "Distance: %2.10g\n", error);
-
- memset(opstats, 0, sizeof(opstats));
- for(int iter = 0, stuck = 0, failures = 0, success = 0;
- /*stuck < 5 && */iter < 10000;
- iter++)
- {
- if(failures > 500)
- {
- stuck++;
- failures = 0;
- }
-
- pipi_image_t *scrap = pipi_copy(tmp);
-
- /* Choose a point at random */
- int pt = det_rand(npoints);
- uint32_t oldval = points[pt];
-
- /* Compute the affected image zone */
- float fx, fy, fr, fg, fb, fs;
- get_point(pt, &fx, &fy, &fr, &fg, &fb, &fs);
- int zonex = (int)fx / RANGE_X - 1;
- int zoney = (int)fy / RANGE_Y - 1;
- int zonew = 3;
- int zoneh = 3;
- if(zonex < 0) { zonex = 0; zonew--; }
- if(zoney < 0) { zoney = 0; zoneh--; }
- if(zonex + zonew >= (int)dw) { zonew--; }
- if(zoney + zoneh >= (int)dh) { zoneh--; }
-
- /* Choose random operations and measure their effect */
- uint8_t op1 = rand_op();
- //uint8_t op2 = rand_op();
-
- uint32_t candidates[3];
- double besterr = error + 1.0;
- int bestop = -1;
- candidates[0] = apply_op(op1, oldval);
- //candidates[1] = apply_op(op2, oldval);
- //candidates[2] = apply_op(op1, apply_op(op2, oldval));
-
- for(int i = 0; i < 1; i++)
- //for(int i = 0; i < 3; i++)
- {
- if(oldval == candidates[i])
- continue;
-
- points[pt] = candidates[i];
-
- render(scrap, zonex * RANGE_X, zoney * RANGE_Y,
- zonew * RANGE_X, zoneh * RANGE_Y);
-
- double newerr = pipi_measure_rmsd(src, scrap);
- if(newerr < besterr)
- {
- besterr = newerr;
- bestop = i;
- }
- }
-
- opstats[op1 * 2]++;
- //opstats[op2 * 2]++;
-
- if(besterr < error)
- {
- points[pt] = candidates[bestop];
- /* Redraw image if the last check wasn't the best one */
- if(bestop != 2)
- render(scrap, zonex * RANGE_X, zoney * RANGE_Y,
- zonew * RANGE_X, zoneh * RANGE_Y);
-
- pipi_free(tmp);
- tmp = scrap;
- //fprintf(stderr, "%08i %2.010g %2.010g after op%i(%i)\n",
- // iter, besterr - error, error, op1, pt);
- fprintf(stderr, "%08i -.%08i %2.010g after op%i(%i)\n", iter,
- (int)((error - besterr) * 100000000), error, op1, pt);
- error = besterr;
- opstats[op1 * 2 + 1]++;
- //opstats[op2 * 2 + 1]++;
- failures = 0;
- success++;
-
- /* Save image! */
- //char buf[128];
- //sprintf(buf, "twit%08i.bmp", success);
- //if((success % 10) == 0)
- // pipi_save(tmp, buf);
- }
- else
- {
- pipi_free(scrap);
- points[pt] = oldval;
- failures++;
- }
- }
-
- for(int j = 0; j < 2; j++)
- {
- fprintf(stderr, "operation: ");
- for(int i = NB_OPS / 2 * j; i < NB_OPS / 2 * (j + 1); i++)
- fprintf(stderr, "%4i ", i);
- fprintf(stderr, "\nattempts: ");
- for(int i = NB_OPS / 2 * j; i < NB_OPS / 2 * (j + 1); i++)
- fprintf(stderr, "%4i ", opstats[i * 2]);
- fprintf(stderr, "\nsuccesses: ");
- for(int i = NB_OPS / 2 * j; i < NB_OPS / 2 * (j + 1); i++)
- fprintf(stderr, "%4i ", opstats[i * 2 + 1]);
- fprintf(stderr, "\n");
- }
-
- fprintf(stderr, "Distance: %2.10g\n", error);
-
- dst = pipi_resize(tmp, width, height);
- pipi_free(tmp);
-
- /* Save image and bail out */
- pipi_save(dst, "lol.bmp");
- pipi_free(dst);
-
- return ret;
- }
|