Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

PhysicObject.h 7.1 KiB

12 anos atrás
12 anos atrás
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275
  1. //
  2. // Orbital
  3. //
  4. // Copyright: (c) 2009-2012 Cdric Lecacheur <jordx@free.fr>
  5. // (c) 2009-2012 Benjamin Huet <huet.benjamin@gmail.com>
  6. // (c) 2012 Sam Hocevar <sam@hocevar.net>
  7. //
  8. /* FIXME: this file is pure crap; it's only a test. */
  9. #if !defined __PHYSICOBJECT_H__
  10. #define __PHYSICOBJECT_H__
  11. #include "core.h"
  12. #include "easymesh/easymesh.h"
  13. #include "Physics/Include/EasyPhysics.h"
  14. #include "Physics/Include/EasyCharacterController.h"
  15. #include "Physics/Include/EasyConstraint.h"
  16. using namespace lol;
  17. using namespace lol::phys;
  18. class PhysicsObject : public WorldEntity
  19. {
  20. public:
  21. PhysicsObject(Simulation* new_sim, const vec3 &base_location, const quat &base_rotation)
  22. : m_ready(false), m_should_render(true), m_is_character(false)
  23. {
  24. m_mesh.Compile("[sc#ddd afcb60 1 60 -.1]");
  25. vec3 BoxSize = vec3(60.f, 1.f, 60.f);
  26. m_physics.SetCollisionChannel(0, 0xFF);
  27. m_physics.SetShapeToBox(BoxSize);
  28. m_physics.SetMass(.0f);
  29. m_physics.SetTransform(base_location, base_rotation);
  30. m_physics.InitBodyToRigid(true);
  31. m_physics.AddToSimulation(new_sim);
  32. }
  33. PhysicsObject(Simulation* new_sim, const vec3 &base_location, const quat &base_rotation, int dummy)
  34. : m_ready(false), m_should_render(true), m_is_character(false)
  35. {
  36. if (dummy == 1) //for Rope purpose
  37. {
  38. m_mesh.Compile("[sc#ddd afcb20 1 20 -.1]");
  39. vec3 BoxSize = vec3(20.f, 1.f, 20.f);
  40. m_physics.SetCollisionChannel(0, 0xFF);
  41. m_physics.SetShapeToBox(BoxSize);
  42. m_physics.SetMass(.0f);
  43. m_physics.SetTransform(base_location, base_rotation);
  44. m_physics.InitBodyToRigid(true);
  45. m_physics.AddToSimulation(new_sim);
  46. }
  47. else if (dummy == 2) //for character purpose
  48. {
  49. m_is_character = true;
  50. //m_mesh.Compile("[sc#f00 afcb10 10 10 -.1]");
  51. m_mesh.Compile(
  52. "[sc#000 scb#000"
  53. //"[sc#aaa scb#aaa"
  54. "[ad8 2 0 rx180 ty-1]"
  55. "[asph8 .5 .5 .5 ty1]"
  56. "[ac32 2 .5 .5 0 0]"
  57. "[asph6 .1 .1 .1 ty.9 tx.5 tz.15]"
  58. "[asph6 .1 .1 .1 ty.9 tx.5 tz-.15]"
  59. "[asph8 .05 .5 .05 ty.6 tz.5]"
  60. "[asph8 .05 .5 .05 ty.6 tz-.5]"
  61. "]"
  62. "[sc#fd0 scb#fd0"
  63. "[ac8 .4 .1 0 0 0 ty.25 rz-90 ty.7 tx.5]"
  64. "]"
  65. "["
  66. "[sc#fff scb#fff"
  67. "[ad8 2 0 rx180 ty-1]"
  68. "[asph8 .5 .5 .5 ty1]"
  69. "[ac32 1.9 .5 .5 0 0]"
  70. "]"
  71. " ty-.1 tx.05]"
  72. );
  73. vec3 BoxSize = vec3(.5f, 2.f, .5f);
  74. m_character.SetCollisionChannel(0, 0xFF);
  75. m_character.SetShapeToCapsule(BoxSize.x, BoxSize.y);
  76. m_character.SetMass(.0f);
  77. m_character.SetTransform(base_location, base_rotation);
  78. m_character.InitBodyToGhost();
  79. m_character.AddToSimulation(new_sim);
  80. }
  81. }
  82. PhysicsObject(Simulation* new_sim, float base_mass, const vec3 &base_location, int RandValue = -1)
  83. : m_ready(false), m_should_render(true), m_is_character(false)
  84. {
  85. Array<char const *> MeshRand;
  86. MeshRand << "[sc#add afcb2 2 2 -.1]";
  87. MeshRand << "[sc#dad afcb2 2 2 -.1]";
  88. MeshRand << "[sc#dda afcb2 2 2 -.1]";
  89. MeshRand << "[sc#daa afcb2 2 2 -.1]";
  90. MeshRand << "[sc#ada afcb2 2 2 -.1]";
  91. MeshRand << "[sc#aad afcb2 2 2 -.1]";
  92. int SphereLimit = MeshRand.Count();
  93. MeshRand << "[sc#add asph1 2 2 2]";
  94. MeshRand << "[sc#dad asph1 2 2 2]";
  95. MeshRand << "[sc#dda asph1 2 2 2]";
  96. MeshRand << "[sc#daa asph1 2 2 2]";
  97. MeshRand << "[sc#ada asph1 2 2 2]";
  98. MeshRand << "[sc#aad asph1 2 2 2]";
  99. int ConeLimit = MeshRand.Count();
  100. MeshRand << "[sc#add scb#add ad1 2 0 rx180 ty-1 ac4 2 2 0 0 0]";
  101. MeshRand << "[sc#dad scb#dad ad1 2 0 rx180 ty-1 ac4 2 2 0 0 0]";
  102. MeshRand << "[sc#dda scb#dda ad1 2 0 rx180 ty-1 ac4 2 2 0 0 0]";
  103. MeshRand << "[sc#daa scb#daa ad1 2 0 rx180 ty-1 ac4 2 2 0 0 0]";
  104. MeshRand << "[sc#ada scb#ada ad1 2 0 rx180 ty-1 ac4 2 2 0 0 0]";
  105. MeshRand << "[sc#aad scb#aad ad1 2 0 rx180 ty-1 ac4 2 2 0 0 0]";
  106. int CylLimit = MeshRand.Count();
  107. MeshRand << "[sc#add scb#add ad1 2 0 rx180 ty-1 my ac4 2 2 2 0 0]";
  108. MeshRand << "[sc#dad scb#dad ad1 2 0 rx180 ty-1 my ac4 2 2 2 0 0]";
  109. MeshRand << "[sc#dda scb#dda ad1 2 0 rx180 ty-1 my ac4 2 2 2 0 0]";
  110. MeshRand << "[sc#daa scb#daa ad1 2 0 rx180 ty-1 my ac4 2 2 2 0 0]";
  111. MeshRand << "[sc#ada scb#ada ad1 2 0 rx180 ty-1 my ac4 2 2 2 0 0]";
  112. MeshRand << "[sc#aad scb#aad ad1 2 0 rx180 ty-1 my ac4 2 2 2 0 0]";
  113. int CapsLimit = MeshRand.Count();
  114. MeshRand << "[sc#add scb#add acap1 2 1]";
  115. MeshRand << "[sc#dad scb#dad acap1 2 1]";
  116. MeshRand << "[sc#dda scb#dda acap1 2 1]";
  117. MeshRand << "[sc#daa scb#daa acap1 2 1]";
  118. MeshRand << "[sc#ada scb#ada acap1 2 1]";
  119. MeshRand << "[sc#aad scb#aad acap1 2 1]";
  120. switch (RandValue)
  121. {
  122. case 0:
  123. {
  124. RandValue = (int)(lol::RandF() * (SphereLimit - 1));
  125. break;
  126. }
  127. case 1:
  128. {
  129. RandValue = SphereLimit + (int)(lol::RandF() * ((ConeLimit - SphereLimit) - 1));
  130. break;
  131. }
  132. case 2:
  133. {
  134. RandValue = ConeLimit + (int)(lol::RandF() * ((CylLimit - ConeLimit) - 1));
  135. break;
  136. }
  137. case 3:
  138. {
  139. RandValue = CylLimit + (int)(lol::RandF() * ((CapsLimit - CylLimit) - 1));
  140. break;
  141. }
  142. case 4:
  143. {
  144. RandValue = CapsLimit + (int)(lol::RandF() * ((MeshRand.Count() - CapsLimit) - 1));
  145. break;
  146. }
  147. default:
  148. {
  149. RandValue = (int)(lol::RandF() * (MeshRand.Count() - 1));
  150. }
  151. }
  152. m_mesh.Compile(MeshRand[RandValue]);
  153. vec3 BoxSize = vec3(2.0f);
  154. int ColGroup = 1;
  155. if (RandValue < SphereLimit)
  156. {
  157. m_physics.SetShapeToBox(BoxSize);
  158. ColGroup += 0;
  159. }
  160. else if (RandValue < ConeLimit)
  161. {
  162. m_physics.SetShapeToSphere(BoxSize.x * 2.f);
  163. ColGroup += 1;
  164. }
  165. else if (RandValue < CylLimit)
  166. {
  167. m_physics.SetShapeToCone(BoxSize.x, BoxSize.y);
  168. ColGroup += 2;
  169. }
  170. else if (RandValue < CapsLimit)
  171. {
  172. m_physics.SetShapeToCylinder(BoxSize);
  173. ColGroup += 3;
  174. }
  175. else
  176. {
  177. m_physics.SetShapeToCapsule(BoxSize.x, BoxSize.y);
  178. ColGroup += 4;
  179. }
  180. m_physics.SetCollisionChannel(0, 0xFF);
  181. //m_physics.SetCollisionChannel(ColGroup, (1<<ColGroup)|(1));
  182. m_physics.SetMass(base_mass);
  183. m_physics.SetTransform(base_location);
  184. m_physics.InitBodyToRigid();
  185. m_physics.AddToSimulation(new_sim);
  186. }
  187. void SetTransform(const lol::vec3& base_location, const lol::quat& base_rotation=lol::quat(lol::mat4(1.0f)))
  188. {
  189. if (m_is_character)
  190. m_character.SetTransform(base_location, base_rotation);
  191. else
  192. m_physics.SetTransform(base_location, base_rotation);
  193. }
  194. lol::mat4 GetTransform()
  195. {
  196. if (m_is_character)
  197. return m_character.GetTransform();
  198. else
  199. return m_physics.GetTransform();
  200. }
  201. void SetRender(bool should_render)
  202. {
  203. m_should_render = should_render;
  204. }
  205. EasyMesh *GetMesh() { return &m_mesh; }
  206. EasyPhysic *GetPhysic() { return &m_physics; }
  207. EasyPhysic *GetCharacter() { return &m_character; }
  208. ~PhysicsObject()
  209. {
  210. }
  211. char const *GetName() { return "<PhysicsObject>"; }
  212. protected:
  213. virtual void TickGame(float seconds)
  214. {
  215. WorldEntity::TickGame(seconds);
  216. }
  217. virtual void TickDraw(float seconds)
  218. {
  219. WorldEntity::TickDraw(seconds);
  220. if (!m_ready)
  221. {
  222. m_mesh.MeshConvert();
  223. m_ready = true;
  224. }
  225. if (m_should_render)
  226. {
  227. if (m_is_character)
  228. m_mesh.Render(m_character.GetTransform());
  229. else
  230. m_mesh.Render(m_physics.GetTransform());
  231. }
  232. }
  233. private:
  234. //Base datas
  235. EasyMesh m_mesh;
  236. EasyPhysic m_physics;
  237. EasyCharacterController m_character;
  238. bool m_ready;
  239. bool m_should_render;
  240. bool m_is_character;
  241. };
  242. #endif /* __PHYSICOBJECT_H__ */