You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

пре 7 година
пре 7 година
пре 7 година
пре 7 година
пре 7 година
пре 7 година
пре 7 година
пре 7 година
пре 7 година
пре 7 година
пре 7 година
пре 7 година
пре 7 година
пре 7 година
пре 7 година
пре 7 година
пре 7 година
пре 7 година
пре 7 година
пре 7 година
пре 7 година
пре 7 година
пре 7 година
пре 7 година
пре 7 година
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693
  1. //
  2. // Lol Engine
  3. //
  4. // Copyright © 2010—2019 Sam Hocevar <sam@hocevar.net>
  5. //
  6. // Lol Engine is free software. It comes without any warranty, to
  7. // the extent permitted by applicable law. You can redistribute it
  8. // and/or modify it under the terms of the Do What the Fuck You Want
  9. // to Public License, Version 2, as published by the WTFPL Task Force.
  10. // See http://www.wtfpl.net/ for more details.
  11. //
  12. #include <new>
  13. #include <string>
  14. #include <sstream>
  15. #include <iomanip>
  16. #include <cstring>
  17. #include <cstdlib>
  18. #include <cmath>
  19. namespace lol
  20. {
  21. /*
  22. * Initialisation order is not important because everything is
  23. * done on demand, but here is the dependency list anyway:
  24. * - fast_log() requires R_1
  25. * - log() requires R_LN2
  26. * - inverse() require R_2
  27. * - exp() requires R_0, R_1, R_LN2
  28. * - sqrt() requires R_3
  29. */
  30. static real fast_log(real const &x);
  31. static real load_min();
  32. static real load_max();
  33. static real load_pi();
  34. /* These getters do not need caching, their return values are small */
  35. template<> inline real const real::R_0() { return real(); }
  36. template<> inline real const real::R_INF() { real ret; ret.m_inf = true; return ret; }
  37. template<> inline real const real::R_NAN() { real ret; ret.m_nan = true; return ret; }
  38. #define LOL_CONSTANT_GETTER(name, value) \
  39. template<> inline real const& real::name() \
  40. { \
  41. static real ret; \
  42. static int prev_bigit_count = -1; \
  43. /* If the default bigit count has changed, we must recompute
  44. * the value with the desired precision. */ \
  45. if (prev_bigit_count != global_bigit_count()) \
  46. { \
  47. ret = (value); \
  48. prev_bigit_count = global_bigit_count(); \
  49. } \
  50. return ret; \
  51. }
  52. LOL_CONSTANT_GETTER(R_1, real(1.0));
  53. LOL_CONSTANT_GETTER(R_2, real(2.0));
  54. LOL_CONSTANT_GETTER(R_3, real(3.0));
  55. LOL_CONSTANT_GETTER(R_10, real(10.0));
  56. LOL_CONSTANT_GETTER(R_MIN, load_min());
  57. LOL_CONSTANT_GETTER(R_MAX, load_max());
  58. LOL_CONSTANT_GETTER(R_LN2, fast_log(R_2()));
  59. LOL_CONSTANT_GETTER(R_LN10, log(R_10()));
  60. LOL_CONSTANT_GETTER(R_LOG2E, inverse(R_LN2()));
  61. LOL_CONSTANT_GETTER(R_LOG10E, inverse(R_LN10()));
  62. LOL_CONSTANT_GETTER(R_E, exp(R_1()));
  63. LOL_CONSTANT_GETTER(R_PI, load_pi());
  64. LOL_CONSTANT_GETTER(R_PI_2, R_PI() / 2);
  65. LOL_CONSTANT_GETTER(R_PI_3, R_PI() / R_3());
  66. LOL_CONSTANT_GETTER(R_PI_4, R_PI() / 4);
  67. LOL_CONSTANT_GETTER(R_TAU, R_PI() + R_PI());
  68. LOL_CONSTANT_GETTER(R_1_PI, inverse(R_PI()));
  69. LOL_CONSTANT_GETTER(R_2_PI, R_1_PI() * 2);
  70. LOL_CONSTANT_GETTER(R_2_SQRTPI, inverse(sqrt(R_PI())) * 2);
  71. LOL_CONSTANT_GETTER(R_SQRT2, sqrt(R_2()));
  72. LOL_CONSTANT_GETTER(R_SQRT3, sqrt(R_3()));
  73. LOL_CONSTANT_GETTER(R_SQRT1_2, R_SQRT2() / 2);
  74. #undef LOL_CONSTANT_GETTER
  75. /*
  76. * Now carry on with the rest of the Real class.
  77. */
  78. template<> inline real::Real(int32_t i) { new(this) real((double)i); }
  79. template<> inline real::Real(uint32_t i) { new(this) real((double)i); }
  80. template<> inline real::Real(float f) { new(this) real((double)f); }
  81. template<> inline real::Real(int64_t i)
  82. {
  83. new(this) real((uint64_t)std::abs(i));
  84. m_sign = i < 0;
  85. }
  86. template<> inline real::Real(uint64_t i)
  87. {
  88. new(this) real();
  89. if (i)
  90. {
  91. /* Only works with 32-bit bigits for now */
  92. static_assert(sizeof(bigit_t) == 4, "bigit_t must be 32-bit");
  93. int delta = 1;
  94. while ((i >> 63) == 0)
  95. {
  96. i <<= 1;
  97. ++delta;
  98. }
  99. i <<= 1; /* Remove implicit one */
  100. m_exponent = 64 - delta;
  101. m_mantissa.resize(DEFAULT_BIGIT_COUNT);
  102. m_mantissa[0] = (bigit_t)(i >> 32);
  103. if (bigit_count() > 1)
  104. m_mantissa[1] = (bigit_t)i;
  105. }
  106. }
  107. template<> inline real::Real(double d)
  108. {
  109. union { double d; uint64_t x; } u = { d };
  110. m_sign = bool(u.x >> 63);
  111. exponent_t exponent = (u.x << 1) >> 53;
  112. switch (exponent)
  113. {
  114. case 0x00: /* +0 / -0 */
  115. break;
  116. case 0x7ff: /* Inf/NaN (FIXME: handle NaN!) */
  117. m_inf = true;
  118. break;
  119. default:
  120. /* Only works with 32-bit bigits for now */
  121. static_assert(sizeof(bigit_t) == 4, "bigit_t must be 32-bit");
  122. m_exponent = exponent - ((1 << 10) - 1);
  123. m_mantissa.resize(DEFAULT_BIGIT_COUNT);
  124. m_mantissa[0] = (bigit_t)(u.x >> 20);
  125. if (bigit_count() > 1)
  126. m_mantissa[1] = (bigit_t)(u.x << 12);
  127. break;
  128. }
  129. }
  130. template<> inline real::Real(long double f)
  131. {
  132. /* We don’t know the long double layout, so we get rid of the
  133. * exponent, then load it into a real in two steps. */
  134. int exponent;
  135. f = frexpl(f, &exponent);
  136. new(this) real(double(f));
  137. *this += double(f - (long double)*this);
  138. m_exponent += exponent;
  139. }
  140. template<> inline real::operator float() const { return (float)(double)*this; }
  141. template<> inline real::operator int32_t() const { return (int32_t)(double)floor(*this); }
  142. template<> inline real::operator uint32_t() const { return (uint32_t)(double)floor(*this); }
  143. template<> inline real::operator uint64_t() const
  144. {
  145. uint32_t msb = (uint32_t)ldexp(*this, -32);
  146. uint64_t ret = ((uint64_t)msb << 32)
  147. | (uint32_t)(*this - ldexp((real)msb, 32));
  148. return ret;
  149. }
  150. template<> inline real::operator int64_t() const
  151. {
  152. /* If number is positive, convert it to uint64_t first. If it is
  153. * negative, switch its sign first. */
  154. return is_negative() ? -(int64_t)-*this : (int64_t)(uint64_t)*this;
  155. }
  156. template<> inline real::operator double() const
  157. {
  158. union { double d; uint64_t x; } u;
  159. /* Get sign */
  160. u.x = (is_negative() ? 1 : 0) << 11;
  161. /* Compute new exponent (FIXME: handle Inf/NaN) */
  162. int64_t e = m_exponent + ((1 << 10) - 1);
  163. if (is_zero())
  164. u.x <<= 52;
  165. else if (e < 0) /* if exponent underflows, set to zero */
  166. u.x <<= 52;
  167. else if (e >= 0x7ff)
  168. {
  169. u.x |= 0x7ff;
  170. u.x <<= 52;
  171. }
  172. else
  173. {
  174. u.x |= e;
  175. /* Store mantissa if necessary */
  176. u.x <<= 32;
  177. if (bigit_count() > 0)
  178. u.x |= m_mantissa[0];
  179. u.x <<= 20;
  180. if (bigit_count() > 1)
  181. {
  182. u.x |= m_mantissa[1] >> 12;
  183. /* Rounding */
  184. u.x += (m_mantissa[1] >> 11) & 1;
  185. }
  186. }
  187. return u.d;
  188. }
  189. template<> inline real::operator long double() const
  190. {
  191. double hi = double(*this);
  192. double lo = double(*this - hi);
  193. return (long double)(hi) + (long double)(lo);
  194. }
  195. /*
  196. * Create a real number from an ASCII representation
  197. */
  198. template<> inline real::Real(char const *str)
  199. {
  200. real ret = 0;
  201. exponent_t exponent = 0;
  202. bool hex = false, comma = false, nonzero = false, negative = false, finished = false;
  203. for (char const *p = str; *p && !finished; p++)
  204. {
  205. switch (*p)
  206. {
  207. case '-':
  208. case '+':
  209. if (p != str)
  210. break;
  211. negative = (*p == '-');
  212. break;
  213. case '.':
  214. if (comma)
  215. finished = true;
  216. comma = true;
  217. break;
  218. case 'x':
  219. case 'X':
  220. /* This character is only valid for 0x... and 0X... numbers */
  221. if (p != str + 1 || str[0] != '0')
  222. finished = true;
  223. hex = true;
  224. break;
  225. case 'p':
  226. case 'P':
  227. if (hex)
  228. exponent += atoi(p + 1);
  229. finished = true;
  230. break;
  231. case 'e':
  232. case 'E':
  233. if (!hex)
  234. {
  235. exponent += atoi(p + 1);
  236. finished = true;
  237. break;
  238. }
  239. LOL_ATTR_FALLTHROUGH
  240. case 'a': case 'b': case 'c': case 'd': case 'f':
  241. case 'A': case 'B': case 'C': case 'D': case 'F':
  242. case '0': case '1': case '2': case '3': case '4':
  243. case '5': case '6': case '7': case '8': case '9':
  244. if (nonzero)
  245. {
  246. /* Multiply ret by 10 or 16 depending the base. */
  247. if (!hex)
  248. {
  249. real x = ret + ret;
  250. ret = x + x + ret;
  251. }
  252. ret.m_exponent += hex ? 4 : 1;
  253. }
  254. if (*p != '0')
  255. {
  256. ret += (*p >= 'a' && *p <= 'f') ? (int)(*p - 'a' + 10)
  257. : (*p >= 'A' && *p <= 'F') ? (int)(*p - 'A' + 10)
  258. : (int)(*p - '0');
  259. nonzero = true;
  260. }
  261. if (comma)
  262. exponent -= hex ? 4 : 1;
  263. break;
  264. default:
  265. finished = true;
  266. break;
  267. }
  268. }
  269. if (hex)
  270. ret.m_exponent += exponent;
  271. else if (exponent)
  272. ret *= pow(R_10(), (real)exponent);
  273. if (negative)
  274. ret = -ret;
  275. *this = ret;
  276. }
  277. template<> inline real real::operator +() const
  278. {
  279. return *this;
  280. }
  281. template<> inline real real::operator -() const
  282. {
  283. real ret = *this;
  284. ret.m_sign ^= true;
  285. return ret;
  286. }
  287. template<> inline real real::operator +(real const &x) const
  288. {
  289. if (x.is_zero())
  290. return *this;
  291. if (is_zero())
  292. return x;
  293. /* Ensure both arguments are positive. Otherwise, switch signs,
  294. * or replace + with -. */
  295. if (is_negative())
  296. return -(-*this + -x);
  297. if (x.is_negative())
  298. return *this - (-x);
  299. /* Ensure *this has the larger exponent (no need for the mantissa to
  300. * be larger, as in subtraction). Otherwise, switch. */
  301. if (m_exponent < x.m_exponent)
  302. return x + *this;
  303. int64_t e1 = m_exponent;
  304. int64_t e2 = x.m_exponent;
  305. int64_t bigoff = (e1 - e2) / bigit_bits();
  306. int64_t off = e1 - e2 - bigoff * bigit_bits();
  307. /* FIXME: ensure we have the same number of bigits */
  308. if (bigoff > bigit_count())
  309. return *this;
  310. real ret;
  311. ret.m_mantissa.resize(bigit_count());
  312. ret.m_exponent = m_exponent;
  313. uint64_t carry = 0;
  314. for (int i = bigit_count(); i--; )
  315. {
  316. carry += m_mantissa[i];
  317. if (i - bigoff >= 0)
  318. carry += x.m_mantissa[i - bigoff] >> off;
  319. if (off && i - bigoff > 0)
  320. carry += (x.m_mantissa[i - bigoff - 1] << (bigit_bits() - off)) & 0xffffffffu;
  321. else if (i - bigoff == 0)
  322. carry += (uint64_t)1 << (bigit_bits() - off);
  323. ret.m_mantissa[i] = (uint32_t)carry;
  324. carry >>= bigit_bits();
  325. }
  326. /* Renormalise in case we overflowed the mantissa */
  327. if (carry)
  328. {
  329. carry--;
  330. for (int i = 0; i < bigit_count(); ++i)
  331. {
  332. uint32_t tmp = ret.m_mantissa[i];
  333. ret.m_mantissa[i] = ((uint32_t)carry << (bigit_bits() - 1))
  334. | (tmp >> 1);
  335. carry = tmp & 1u;
  336. }
  337. ret.m_exponent++;
  338. }
  339. return ret;
  340. }
  341. template<> inline real real::operator -(real const &x) const
  342. {
  343. if (x.is_zero())
  344. return *this;
  345. if (is_zero())
  346. return -x;
  347. /* Ensure both arguments are positive. Otherwise, switch signs,
  348. * or replace - with +. */
  349. if (is_negative())
  350. return -(-*this + x);
  351. if (x.is_negative())
  352. return (*this) + (-x);
  353. /* Ensure *this is larger than x */
  354. if (*this < x)
  355. return -(x - *this);
  356. exponent_t e1 = m_exponent;
  357. exponent_t e2 = x.m_exponent;
  358. exponent_t bigoff = (e1 - e2) / bigit_bits();
  359. exponent_t off = e1 - e2 - bigoff * bigit_bits();
  360. /* FIXME: ensure we have the same number of bigits */
  361. if (bigoff > bigit_count())
  362. return *this;
  363. real ret;
  364. ret.m_mantissa.resize(bigit_count());
  365. ret.m_exponent = m_exponent;
  366. /* int64_t instead of uint64_t to preserve sign through shifts */
  367. exponent_t carry = 0;
  368. for (int i = 0; i < bigoff; ++i)
  369. {
  370. carry -= x.m_mantissa[bigit_count() - 1 - i];
  371. /* Emulates a signed shift */
  372. carry >>= bigit_bits();
  373. carry |= carry << bigit_bits();
  374. }
  375. if (bigoff < bigit_count())
  376. carry -= x.m_mantissa[bigit_count() - 1 - bigoff] & (((exponent_t)1 << off) - 1);
  377. carry /= (exponent_t)1 << off;
  378. for (int i = bigit_count(); i--; )
  379. {
  380. carry += m_mantissa[i];
  381. if (i - bigoff >= 0)
  382. carry -= x.m_mantissa[i - bigoff] >> off;
  383. if (off && i - bigoff > 0)
  384. carry -= (x.m_mantissa[i - bigoff - 1] << (bigit_bits() - off)) & 0xffffffffu;
  385. else if (i - bigoff == 0)
  386. carry -= (uint64_t)1 << (bigit_bits() - off);
  387. ret.m_mantissa[i] = (bigit_t)carry;
  388. carry >>= bigit_bits();
  389. carry |= carry << bigit_bits();
  390. }
  391. carry += 1;
  392. /* Renormalise if we underflowed the mantissa */
  393. if (carry == 0)
  394. {
  395. /* How much do we need to shift the mantissa? FIXME: this could
  396. * be computed above */
  397. off = 0;
  398. for (int i = 0; i < bigit_count(); ++i)
  399. {
  400. if (!ret.m_mantissa[i])
  401. {
  402. off += bigit_bits();
  403. continue;
  404. }
  405. /* “~tmp > tmp” checks that the MSB is not set */
  406. for (bigit_t tmp = ret.m_mantissa[i]; ~tmp > tmp; tmp <<= 1)
  407. off++;
  408. break;
  409. }
  410. if (off == total_bits())
  411. ret.m_mantissa.resize(0);
  412. else
  413. {
  414. off++; /* Shift once more to get rid of the leading 1 */
  415. ret.m_exponent -= off;
  416. bigoff = off / bigit_bits();
  417. off -= bigoff * bigit_bits();
  418. for (int i = 0; i < bigit_count(); ++i)
  419. {
  420. bigit_t tmp = 0;
  421. if (i + bigoff < bigit_count())
  422. tmp |= ret.m_mantissa[i + bigoff] << off;
  423. if (off && i + bigoff + 1 < bigit_count())
  424. tmp |= ret.m_mantissa[i + bigoff + 1] >> (bigit_bits() - off);
  425. ret.m_mantissa[i] = tmp;
  426. }
  427. }
  428. }
  429. return ret;
  430. }
  431. template<> inline real real::operator *(real const &x) const
  432. {
  433. real ret;
  434. /* The sign is easy to compute */
  435. ret.m_sign = is_negative() ^ x.is_negative();
  436. /* If any operand is zero, return zero. FIXME: 0 * Inf? */
  437. if (is_zero() || x.is_zero())
  438. return ret;
  439. ret.m_mantissa.resize(bigit_count());
  440. ret.m_exponent = m_exponent + x.m_exponent;
  441. /* Accumulate low order product; no need to store it, we just
  442. * want the carry value */
  443. uint64_t carry = 0, hicarry = 0, prev;
  444. for (int i = 0; i < bigit_count(); ++i)
  445. {
  446. for (int j = 0; j < i + 1; j++)
  447. {
  448. prev = carry;
  449. carry += (uint64_t)m_mantissa[bigit_count() - 1 - j]
  450. * (uint64_t)x.m_mantissa[bigit_count() - 1 + j - i];
  451. if (carry < prev)
  452. hicarry++;
  453. }
  454. carry >>= bigit_bits();
  455. carry |= hicarry << bigit_bits();
  456. hicarry >>= bigit_bits();
  457. }
  458. /* Multiply the other components */
  459. for (int i = 0; i < bigit_count(); ++i)
  460. {
  461. for (int j = i + 1; j < bigit_count(); j++)
  462. {
  463. prev = carry;
  464. carry += (uint64_t)m_mantissa[bigit_count() - 1 - j]
  465. * (uint64_t)x.m_mantissa[j - 1 - i];
  466. if (carry < prev)
  467. hicarry++;
  468. }
  469. prev = carry;
  470. carry += m_mantissa[bigit_count() - 1 - i];
  471. carry += x.m_mantissa[bigit_count() - 1 - i];
  472. if (carry < prev)
  473. hicarry++;
  474. ret.m_mantissa[bigit_count() - 1 - i] = carry & ~(bigit_t)0;
  475. carry >>= bigit_bits();
  476. carry |= hicarry << bigit_bits();
  477. hicarry >>= bigit_bits();
  478. }
  479. /* Renormalise in case we overflowed the mantissa */
  480. if (carry)
  481. {
  482. carry--;
  483. for (int i = 0; i < bigit_count(); ++i)
  484. {
  485. bigit_t tmp = ret.m_mantissa[i];
  486. ret.m_mantissa[i] = ((bigit_t)carry << (bigit_bits() - 1))
  487. | (tmp >> 1);
  488. carry = tmp & 1u;
  489. }
  490. ++ret.m_exponent;
  491. }
  492. return ret;
  493. }
  494. template<> inline real real::operator /(real const &x) const
  495. {
  496. return *this * inverse(x);
  497. }
  498. template<> inline real const &real::operator +=(real const &x)
  499. {
  500. real tmp = *this;
  501. return *this = tmp + x;
  502. }
  503. template<> inline real const &real::operator -=(real const &x)
  504. {
  505. real tmp = *this;
  506. return *this = tmp - x;
  507. }
  508. template<> inline real const &real::operator *=(real const &x)
  509. {
  510. real tmp = *this;
  511. return *this = tmp * x;
  512. }
  513. template<> inline real const &real::operator /=(real const &x)
  514. {
  515. real tmp = *this;
  516. return *this = tmp / x;
  517. }
  518. template<> inline bool real::operator ==(real const &x) const
  519. {
  520. /* If NaN is involved, return false */
  521. if (is_nan() || x.is_nan())
  522. return false;
  523. /* If both zero, they are equal; if either is zero, they are different */
  524. if (is_zero() || x.is_zero())
  525. return is_zero() && x.is_zero();
  526. /* FIXME: handle NaN/Inf */
  527. return m_exponent == x.m_exponent && m_mantissa == x.m_mantissa;
  528. }
  529. template<> inline bool real::operator !=(real const &x) const
  530. {
  531. return !(is_nan() || x.is_nan() || *this == x);
  532. }
  533. template<> inline bool real::operator <(real const &x) const
  534. {
  535. /* If NaN is involved, return false */
  536. if (is_nan() || x.is_nan())
  537. return false;
  538. /* Ensure we are positive */
  539. if (is_negative())
  540. return -*this > -x;
  541. /* If x is zero or negative, we can’t be < x */
  542. if (x.is_negative() || x.is_zero())
  543. return false;
  544. /* If we are zero, we must be < x */
  545. if (is_zero())
  546. return true;
  547. /* Compare exponents */
  548. if (m_exponent != x.m_exponent)
  549. return m_exponent < x.m_exponent;
  550. /* Compare all relevant bits */
  551. for (int i = 0; i < bigit_count(); ++i)
  552. if (m_mantissa[i] != x.m_mantissa[i])
  553. return m_mantissa[i] < x.m_mantissa[i];
  554. return false;
  555. }
  556. template<> inline bool real::operator <=(real const &x) const
  557. {
  558. return !(is_nan() || x.is_nan() || *this > x);
  559. }
  560. template<> inline bool real::operator >(real const &x) const
  561. {
  562. /* If NaN is involved, return false */
  563. if (is_nan() || x.is_nan())
  564. return false;
  565. /* Ensure we are positive */
  566. if (is_negative())
  567. return -*this < -x;
  568. /* If x is zero, we’re > x iff we’re non-zero since we’re positive */
  569. if (x.is_zero())
  570. return !is_zero();
  571. /* If x is strictly negative, we’re > x */
  572. if (x.is_negative())
  573. return true;
  574. /* If we are zero, we can’t be > x */
  575. if (is_zero())
  576. return false;
  577. /* Compare exponents */
  578. if (m_exponent != x.m_exponent)
  579. return m_exponent > x.m_exponent;
  580. /* Compare all relevant bits */
  581. for (int i = 0; i < bigit_count(); ++i)
  582. if (m_mantissa[i] != x.m_mantissa[i])
  583. return m_mantissa[i] > x.m_mantissa[i];
  584. return false;
  585. }
  586. template<> inline bool real::operator >=(real const &x) const
  587. {
  588. return !(is_nan() || x.is_nan() || *this < x);
  589. }
  590. template<> inline bool real::operator !() const
  591. {
  592. return !(bool)*this;
  593. }
  594. template<> inline real::operator bool() const
  595. {
  596. /* A real is "true" if it is non-zero AND not NaN */
  597. return !is_zero() && !is_nan();
  598. }
  599. template<> inline real min(real const &a, real const &b)
  600. {
  601. return (a < b) ? a : b;
  602. }
  603. template<> inline real max(real const &a, real const &b)
  604. {
  605. return (a > b) ? a : b;
  606. }
  607. template<> inline real clamp(real const &x, real const &a, real const &b)
  608. {
  609. return (x < a) ? a : (x > b) ? b : x;
  610. }
  611. template<> inline real inverse(real const &x)
  612. {
  613. real ret;
  614. /* If zero, return infinite */
  615. if (x.is_zero())
  616. return copysign(real::R_INF(), x);
  617. /* Use the system’s float inversion to approximate 1/x */
  618. union { float f; uint32_t x; } u = { 1.0f };
  619. u.x |= x.m_mantissa[0] >> 9;
  620. u.f = 1.0f / u.f;
  621. ret.m_mantissa.resize(x.bigit_count());
  622. ret.m_mantissa[0] = u.x << 9;
  623. ret.m_sign = x.m_sign;
  624. ret.m_exponent = -x.m_exponent + (u.x >> 23) - 0x7f;
  625. /* FIXME: 1+log2(bigit_count) steps of Newton-Raphson seems to be enough for
  626. * convergence, but this hasn’t been checked seriously. */
  627. for (int i = 1; i <= x.bigit_count(); i *= 2)
  628. ret = ret * (real::R_2() - ret * x);
  629. return ret;
  630. }
  631. template<> inline real sqrt(real const &x)
  632. {
  633. /* if zero, return x (FIXME: negative zero?) */
  634. if (x.is_zero())
  635. return x;
  636. /* if negative, return NaN */
  637. if (x.is_negative())
  638. return real::R_NAN();
  639. int tweak = x.m_exponent & 1;
  640. /* Use the system’s float inversion to approximate 1/sqrt(x). First
  641. * we construct a float in the [1..4[ range that has roughly the same
  642. * mantissa as our real. Its exponent is 0 or 1, depending on the
  643. * parity of x’s exponent. The final exponent is 0, -1 or -2. We use
  644. * the final exponent and final mantissa to pre-fill the result. */
  645. union { float f; uint32_t x; } u = { 1.0f };
  646. u.x += tweak << 23;
  647. u.x |= x.m_mantissa[0] >> 9;
  648. u.f = 1.0f / sqrtf(u.f);
  649. real ret;
  650. ret.m_mantissa.resize(x.bigit_count());
  651. ret.m_mantissa[0] = u.x << 9;
  652. ret.m_exponent = -(x.m_exponent - tweak) / 2 + (u.x >> 23) - 0x7f;
  653. /* FIXME: 1+log2(bigit_count()) steps of Newton-Raphson seems to be enough for
  654. * convergence, but this hasn’t been checked seriously. */
  655. for (int i = 1; i <= x.bigit_count(); i *= 2)
  656. {
  657. ret = ret * (real::R_3() - ret * ret * x);
  658. --ret.m_exponent;
  659. }
  660. return ret * x;
  661. }
  662. template<> inline real cbrt(real const &x)
  663. {
  664. /* if zero, return x */
  665. if (x.is_zero())
  666. return x;
  667. int tweak = x.m_exponent % 3;
  668. if (tweak < 0)
  669. tweak += 3;
  670. /* Use the system’s float inversion to approximate cbrt(x). First
  671. * we construct a float in the [1..8[ range that has roughly the same
  672. * mantissa as our real. Its exponent is 0, 1 or 2, depending on the
  673. * value of x. The final exponent is 0 or 1 (special case). We use
  674. * the final exponent and final mantissa to pre-fill the result. */
  675. union { float f; uint32_t x; } u = { 1.0f };
  676. u.x += tweak << 23;
  677. u.x |= x.m_mantissa[0] >> 9;
  678. u.f = powf(u.f, 1.f / 3);
  679. real ret;
  680. ret.m_mantissa.resize(x.bigit_count());
  681. ret.m_mantissa[0] = u.x << 9;
  682. ret.m_exponent = (x.m_exponent - tweak) / 3 + (u.x >> 23) - 0x7f;
  683. ret.m_sign = x.m_sign;
  684. /* FIXME: 1+log2(bigit_count()) steps of Newton-Raphson seems to be enough
  685. * for convergence, but this hasn’t been checked seriously. */
  686. real third = inverse(real::R_3());
  687. for (int i = 1; i <= x.bigit_count(); i *= 2)
  688. {
  689. ret = third * (x / (ret * ret) + (ret * 2));
  690. }
  691. return ret;
  692. }
  693. template<> inline real pow(real const &x, real const &y)
  694. {
  695. /* Shortcuts for degenerate cases */
  696. if (!y)
  697. return real::R_1();
  698. if (!x)
  699. return real::R_0();
  700. /* Small integer exponent: use exponentiation by squaring */
  701. int64_t int_y = (int64_t)y;
  702. if (y == (real)int_y)
  703. {
  704. real ret = real::R_1();
  705. real x_n = int_y > 0 ? x : inverse(x);
  706. while (int_y) /* Can be > 0 or < 0 */
  707. {
  708. if (int_y & 1)
  709. ret *= x_n;
  710. x_n *= x_n;
  711. int_y /= 2;
  712. }
  713. return ret;
  714. }
  715. /* If x is positive, nothing special to do. */
  716. if (x > real::R_0())
  717. return exp(y * log(x));
  718. /* XXX: manpage for pow() says “If x is a finite value less than 0,
  719. * and y is a finite noninteger, a domain error occurs, and a NaN is
  720. * returned”. We check whether y is closer to an even number or to
  721. * an odd number and return something reasonable. */
  722. real round_y = round(y);
  723. bool is_odd = round_y / 2 == round(round_y / 2);
  724. return is_odd ? exp(y * log(-x)) : -exp(y * log(-x));
  725. }
  726. /* A fast factorial implementation for small numbers. An optional
  727. * step argument allows to compute double factorials (i.e. with
  728. * only the odd or the even terms. */
  729. static real fast_fact(int x, int step = 1)
  730. {
  731. if (x < step)
  732. return 1;
  733. if (x == step)
  734. return x;
  735. unsigned int start = (x + step - 1) % step + 1;
  736. real ret(start);
  737. uint64_t multiplier = 1;
  738. for (int i = start, exponent = 0;;)
  739. {
  740. if (i >= x)
  741. return ldexp(ret * multiplier, exponent);
  742. i += step;
  743. /* Accumulate the power of two part in the exponent */
  744. unsigned int tmp = i;
  745. while ((tmp & 1) == 0)
  746. {
  747. tmp >>= 1;
  748. exponent++;
  749. }
  750. /* Accumulate the other factors in the multiplier */
  751. if (multiplier * tmp / tmp != multiplier)
  752. {
  753. ret *= multiplier;
  754. multiplier = 1;
  755. }
  756. multiplier *= tmp;
  757. }
  758. }
  759. template<> inline real gamma(real const &x)
  760. {
  761. static float pi = acosf(-1.f);
  762. /* We use Spouge’s formula. FIXME: precision is far from acceptable,
  763. * especially with large values. We need to compute this with higher
  764. * precision values in order to attain the desired accuracy. It might
  765. * also be useful to sort the ck values by decreasing absolute value
  766. * and do the addition in this order. */
  767. int a = (int)ceilf(logf(2) / logf(2 * pi) * x.total_bits());
  768. real ret = sqrt(real::R_PI() * 2);
  769. real fact_k_1 = real::R_1();
  770. for (int k = 1; k < a; k++)
  771. {
  772. real a_k = (real)(a - k);
  773. real ck = pow(a_k, (real)((float)k - 0.5)) * exp(a_k)
  774. / (fact_k_1 * (x + (real)(k - 1)));
  775. ret += ck;
  776. fact_k_1 *= (real)-k;
  777. }
  778. ret *= pow(x + (real)(a - 1), x - (real::R_1() / 2));
  779. ret *= exp(-x - (real)(a - 1));
  780. return ret;
  781. }
  782. template<> inline real fabs(real const &x)
  783. {
  784. real ret = x;
  785. ret.m_sign = false;
  786. return ret;
  787. }
  788. template<> inline real abs(real const &x)
  789. {
  790. return fabs(x);
  791. }
  792. template<> inline real fract(real const &x)
  793. {
  794. return x - floor(x);
  795. }
  796. template<> inline real degrees(real const &x)
  797. {
  798. /* FIXME: need to recompute this for different mantissa sizes */
  799. static real mul = real(180) * real::R_1_PI();
  800. return x * mul;
  801. }
  802. template<> inline real radians(real const &x)
  803. {
  804. /* FIXME: need to recompute this for different mantissa sizes */
  805. static real mul = real::R_PI() / real(180);
  806. return x * mul;
  807. }
  808. static real fast_log(real const &x)
  809. {
  810. /* This fast log method is tuned to work on the [1..2] range and
  811. * no effort whatsoever was made to improve convergence outside this
  812. * domain of validity. It can converge pretty fast, provided we use
  813. * the following variable substitutions:
  814. * y = sqrt(x)
  815. * z = (y - 1) / (y + 1)
  816. *
  817. * And the following identities:
  818. * ln(x) = 2 ln(y)
  819. * = 2 ln((1 + z) / (1 - z))
  820. * = 4 z (1 + z^2 / 3 + z^4 / 5 + z^6 / 7...)
  821. *
  822. * Any additional sqrt() call would halve the convergence time, but
  823. * would also impact the final precision. For now we stick with one
  824. * sqrt() call. */
  825. real y = sqrt(x);
  826. real z = (y - real::R_1()) / (y + real::R_1()), z2 = z * z, zn = z2;
  827. real sum = real::R_1();
  828. for (int i = 3; ; i += 2)
  829. {
  830. real newsum = sum + zn / (real)i;
  831. if (newsum == sum)
  832. break;
  833. sum = newsum;
  834. zn *= z2;
  835. }
  836. return z * sum * 4;
  837. }
  838. template<> inline real log(real const &x)
  839. {
  840. /* Strategy for log(x): if x = 2^E*M then log(x) = E log(2) + log(M),
  841. * with the property that M is in [1..2[, so fast_log() applies here. */
  842. if (x.is_negative() || x.is_zero())
  843. return real::R_NAN();
  844. real tmp(x);
  845. tmp.m_exponent = 0;
  846. return real(x.m_exponent) * real::R_LN2() + fast_log(tmp);
  847. }
  848. template<> inline real log2(real const &x)
  849. {
  850. /* Strategy for log2(x): see log(x). */
  851. if (x.is_negative() || x.is_zero())
  852. return real::R_NAN();
  853. real tmp(x);
  854. tmp.m_exponent = 0;
  855. return real(x.m_exponent) + fast_log(tmp) * real::R_LOG2E();
  856. }
  857. template<> inline real log10(real const &x)
  858. {
  859. return log(x) * real::R_LOG10E();
  860. }
  861. static real fast_exp_sub(real const &x, real const &y)
  862. {
  863. /* This fast exp method is tuned to work on the [-1..1] range and
  864. * no effort whatsoever was made to improve convergence outside this
  865. * domain of validity. The argument y is used for cases where we
  866. * don’t want the leading 1 in the Taylor series. */
  867. real ret = real::R_1() - y, xn = x;
  868. int i = 1;
  869. for (;;)
  870. {
  871. real newret = ret + xn;
  872. if (newret == ret)
  873. break;
  874. ret = newret * ++i;
  875. xn *= x;
  876. }
  877. return ret / fast_fact(i);
  878. }
  879. template<> inline real exp(real const &x)
  880. {
  881. /* Strategy for exp(x): the Taylor series does not converge very fast
  882. * with large positive or negative values.
  883. *
  884. * However, since the result is going to be in the form M*2^E, we first
  885. * try to predict a value for E, which is approximately:
  886. * E ≈ log2(exp(x)) = x / log(2)
  887. *
  888. * Let E0 be an integer close to x / log(2). We need to find a value x0
  889. * such that exp(x) = 2^E0 * exp(x0). We get x0 = x - E0 log(2).
  890. *
  891. * Thus the final algorithm:
  892. * int E0 = x / log(2)
  893. * real x0 = x - E0 log(2)
  894. * real x1 = exp(x0)
  895. * return x1 * 2^E0
  896. */
  897. real::exponent_t e0 = x / real::R_LN2();
  898. real x0 = x - (real)e0 * real::R_LN2();
  899. real x1 = fast_exp_sub(x0, real::R_0());
  900. x1.m_exponent += e0;
  901. return x1;
  902. }
  903. template<> inline real exp2(real const &x)
  904. {
  905. /* Strategy for exp2(x): see strategy in exp(). */
  906. real::exponent_t e0 = x;
  907. real x0 = x - (real)e0;
  908. real x1 = fast_exp_sub(x0 * real::R_LN2(), real::R_0());
  909. x1.m_exponent += e0;
  910. return x1;
  911. }
  912. template<> inline real erf(real const &x)
  913. {
  914. /* Strategy for erf(x):
  915. * - if x<0, erf(x) = -erf(-x)
  916. * - if x<7, erf(x) = sum((-1)^n·x^(2n+1)/((2n+1)·n!))/sqrt(π/4)
  917. * - if x≥7, erf(x) = 1+exp(-x²)/(x·sqrt(π))·sum((-1)^n·(2n-1)!!/(2x²)^n
  918. *
  919. * FIXME: do not compute factorials at each iteration, accumulate
  920. * them instead (see fast_exp_sub).
  921. * FIXME: For a potentially faster implementation, see “Expanding the
  922. * Error Function erf(z)” at:
  923. * http://www.mathematica-journal.com/2014/11/on-burmanns-theorem-and-its-application-to-problems-of-linear-and-nonlinear-heat-transfer-and-diffusion/#more-39602/
  924. */
  925. if (x.is_negative())
  926. return -erf(-x);
  927. real sum = real::R_0();
  928. real x2 = x * x;
  929. /* FIXME: this test is inefficient; the series converges slowly for x≥1 */
  930. if (x < real(7))
  931. {
  932. real xn = x, xmul = x2;
  933. for (int n = 0;; ++n, xn *= xmul)
  934. {
  935. real tmp = xn / (fast_fact(n) * (2 * n + 1));
  936. real newsum = (n & 1) ? sum - tmp : sum + tmp;
  937. if (newsum == sum)
  938. break;
  939. sum = newsum;
  940. }
  941. return sum * real::R_2_SQRTPI();
  942. }
  943. else
  944. {
  945. real xn = real::R_1(), xmul = inverse(x2 + x2);
  946. /* FIXME: this does not converge well! We need to stop at 30
  947. * iterations and sacrifice some accuracy. */
  948. for (int n = 0; n < 30; ++n, xn *= xmul)
  949. {
  950. real tmp = xn * fast_fact(n * 2 - 1, 2);
  951. real newsum = (n & 1) ? sum - tmp : sum + tmp;
  952. if (newsum == sum)
  953. break;
  954. sum = newsum;
  955. }
  956. return real::R_1() - exp(-x2) / (x * sqrt(real::R_PI())) * sum;
  957. }
  958. }
  959. template<> inline real sinh(real const &x)
  960. {
  961. /* We cannot always use (exp(x)-exp(-x))/2 because we'll lose
  962. * accuracy near zero. We only use this identity for |x|>0.5. If
  963. * |x|<=0.5, we compute exp(x)-1 and exp(-x)-1 instead. */
  964. bool near_zero = (fabs(x) < real::R_1() / 2);
  965. real x1 = near_zero ? fast_exp_sub(x, real::R_1()) : exp(x);
  966. real x2 = near_zero ? fast_exp_sub(-x, real::R_1()) : exp(-x);
  967. return (x1 - x2) / 2;
  968. }
  969. template<> inline real tanh(real const &x)
  970. {
  971. /* See sinh() for the strategy here */
  972. bool near_zero = (fabs(x) < real::R_1() / 2);
  973. real x1 = near_zero ? fast_exp_sub(x, real::R_1()) : exp(x);
  974. real x2 = near_zero ? fast_exp_sub(-x, real::R_1()) : exp(-x);
  975. real x3 = near_zero ? x1 + x2 + real::R_2() : x1 + x2;
  976. return (x1 - x2) / x3;
  977. }
  978. template<> inline real cosh(real const &x)
  979. {
  980. /* No need to worry about accuracy here; maybe the last bit is slightly
  981. * off, but that's about it. */
  982. return (exp(x) + exp(-x)) / 2;
  983. }
  984. template<> inline real frexp(real const &x, real::exponent_t *exp)
  985. {
  986. if (!x)
  987. {
  988. *exp = 0;
  989. return x;
  990. }
  991. /* FIXME: check that this works */
  992. *exp = x.m_exponent;
  993. real ret = x;
  994. ret.m_exponent = 0;
  995. return ret;
  996. }
  997. template<> inline real ldexp(real const &x, real::exponent_t exp)
  998. {
  999. real ret = x;
  1000. if (ret) /* Only do something if non-zero */
  1001. ret.m_exponent += exp;
  1002. return ret;
  1003. }
  1004. template<> inline real modf(real const &x, real *iptr)
  1005. {
  1006. real absx = fabs(x);
  1007. real tmp = floor(absx);
  1008. *iptr = copysign(tmp, x);
  1009. return copysign(absx - tmp, x);
  1010. }
  1011. template<> inline real nextafter(real const &x, real const &y)
  1012. {
  1013. /* Linux manpage: “If x equals y, the functions return y.” */
  1014. if (x == y)
  1015. return y;
  1016. /* Ensure x is positive. */
  1017. if (x.is_negative())
  1018. return -nextafter(-x, -y);
  1019. /* FIXME: broken for now */
  1020. real ulp = ldexp(x, -x.total_bits());
  1021. return x < y ? x + ulp : x - ulp;
  1022. }
  1023. template<> inline real copysign(real const &x, real const &y)
  1024. {
  1025. real ret = x;
  1026. ret.m_sign = y.m_sign;
  1027. return ret;
  1028. }
  1029. template<> inline real floor(real const &x)
  1030. {
  1031. /* Strategy for floor(x):
  1032. * - if negative, return -ceil(-x)
  1033. * - if zero or negative zero, return x
  1034. * - if less than one, return zero
  1035. * - otherwise, if e is the exponent, clear all bits except the
  1036. * first e. */
  1037. if (x < -real::R_0())
  1038. return -ceil(-x);
  1039. if (!x)
  1040. return x;
  1041. if (x < real::R_1())
  1042. return real::R_0();
  1043. real ret = x;
  1044. real::exponent_t exponent = x.m_exponent;
  1045. for (int i = 0; i < x.bigit_count(); ++i)
  1046. {
  1047. if (exponent <= 0)
  1048. ret.m_mantissa[i] = 0;
  1049. else if (exponent < real::bigit_bits())
  1050. ret.m_mantissa[i] &= ~((1 << (real::bigit_bits() - exponent)) - 1);
  1051. exponent -= real::bigit_bits();
  1052. }
  1053. return ret;
  1054. }
  1055. template<> inline real ceil(real const &x)
  1056. {
  1057. /* Strategy for ceil(x):
  1058. * - if negative, return -floor(-x)
  1059. * - if x == floor(x), return x
  1060. * - otherwise, return floor(x) + 1 */
  1061. if (x < -real::R_0())
  1062. return -floor(-x);
  1063. real ret = floor(x);
  1064. if (ret < x)
  1065. ret += real::R_1();
  1066. return ret;
  1067. }
  1068. template<> inline real round(real const &x)
  1069. {
  1070. if (x < real::R_0())
  1071. return -round(-x);
  1072. return floor(x + (real::R_1() / 2));
  1073. }
  1074. template<> inline real fmod(real const &x, real const &y)
  1075. {
  1076. if (!y)
  1077. return real::R_0(); /* FIXME: return NaN */
  1078. if (!x)
  1079. return x;
  1080. real tmp = round(x / y);
  1081. return x - tmp * y;
  1082. }
  1083. template<> inline real sin(real const &x)
  1084. {
  1085. bool switch_sign = x.is_negative();
  1086. real absx = fmod(fabs(x), real::R_PI() * 2);
  1087. if (absx > real::R_PI())
  1088. {
  1089. absx -= real::R_PI();
  1090. switch_sign = !switch_sign;
  1091. }
  1092. if (absx > real::R_PI_2())
  1093. absx = real::R_PI() - absx;
  1094. real ret = real::R_0(), fact = real::R_1(), xn = absx, mx2 = -absx * absx;
  1095. int i = 1;
  1096. for (;;)
  1097. {
  1098. real newret = ret + xn;
  1099. if (newret == ret)
  1100. break;
  1101. ret = newret * ((i + 1) * (i + 2));
  1102. xn *= mx2;
  1103. i += 2;
  1104. }
  1105. ret /= fast_fact(i);
  1106. /* Propagate sign */
  1107. ret.m_sign ^= switch_sign;
  1108. return ret;
  1109. }
  1110. template<> inline real cos(real const &x)
  1111. {
  1112. return sin(real::R_PI_2() - x);
  1113. }
  1114. template<> inline real tan(real const &x)
  1115. {
  1116. /* Constrain input to [-π,π] */
  1117. real y = fmod(x, real::R_PI());
  1118. /* Constrain input to [-π/2,π/2] */
  1119. if (y < -real::R_PI_2())
  1120. y += real::R_PI();
  1121. else if (y > real::R_PI_2())
  1122. y -= real::R_PI();
  1123. /* In [-π/4,π/4] return sin/cos */
  1124. if (fabs(y) <= real::R_PI_4())
  1125. return sin(y) / cos(y);
  1126. /* Otherwise, return cos/sin */
  1127. if (y > real::R_0())
  1128. y = real::R_PI_2() - y;
  1129. else
  1130. y = -real::R_PI_2() - y;
  1131. return cos(y) / sin(y);
  1132. }
  1133. static inline real asinacos(real const &x, int is_asin)
  1134. {
  1135. /* Strategy for asin(): in [-0.5..0.5], use a Taylor series around
  1136. * zero. In [0.5..1], use asin(x) = π/2 - 2*asin(sqrt((1-x)/2)), and
  1137. * in [-1..-0.5] just revert the sign.
  1138. * Strategy for acos(): use acos(x) = π/2 - asin(x) and try not to
  1139. * lose the precision around x=1. */
  1140. real absx = fabs(x);
  1141. int around_zero = (absx < (real::R_1() / 2));
  1142. if (!around_zero)
  1143. absx = sqrt((real::R_1() - absx) / 2);
  1144. real ret = absx, xn = absx, x2 = absx * absx, fact1 = 2, fact2 = 1;
  1145. for (int i = 1; ; ++i)
  1146. {
  1147. xn *= x2;
  1148. real mul = (real)(2 * i + 1);
  1149. real newret = ret + ldexp(fact1 * xn / (mul * fact2), -2 * i);
  1150. if (newret == ret)
  1151. break;
  1152. ret = newret;
  1153. fact1 *= (real)((2 * i + 1) * (2 * i + 2));
  1154. fact2 *= (real)((i + 1) * (i + 1));
  1155. }
  1156. if (x.is_negative())
  1157. ret = -ret;
  1158. if (around_zero)
  1159. ret = is_asin ? ret : real::R_PI_2() - ret;
  1160. else
  1161. {
  1162. real adjust = x.is_negative() ? real::R_PI() : real::R_0();
  1163. if (is_asin)
  1164. ret = real::R_PI_2() - adjust - ret * 2;
  1165. else
  1166. ret = adjust + ret * 2;
  1167. }
  1168. return ret;
  1169. }
  1170. template<> inline real asin(real const &x)
  1171. {
  1172. return asinacos(x, 1);
  1173. }
  1174. template<> inline real acos(real const &x)
  1175. {
  1176. return asinacos(x, 0);
  1177. }
  1178. template<> inline real atan(real const &x)
  1179. {
  1180. /* Computing atan(x): we choose a different Taylor series depending on
  1181. * the value of x to help with convergence.
  1182. *
  1183. * If |x| < 0.5 we evaluate atan(y) near 0:
  1184. * atan(y) = y - y^3/3 + y^5/5 - y^7/7 + y^9/9 ...
  1185. *
  1186. * If 0.5 <= |x| < 1.5 we evaluate atan(1+y) near 0:
  1187. * atan(1+y) = π/4 + y/(1*2^1) - y^2/(2*2^1) + y^3/(3*2^2)
  1188. * - y^5/(5*2^3) + y^6/(6*2^3) - y^7/(7*2^4)
  1189. * + y^9/(9*2^5) - y^10/(10*2^5) + y^11/(11*2^6) ...
  1190. *
  1191. * If 1.5 <= |x| < 2 we evaluate atan(sqrt(3)+2y) near 0:
  1192. * atan(sqrt(3)+2y) = π/3 + 1/2 y - sqrt(3)/2 y^2/2
  1193. * + y^3/3 - sqrt(3)/2 y^4/4 + 1/2 y^5/5
  1194. * - 1/2 y^7/7 + sqrt(3)/2 y^8/8
  1195. * - y^9/9 + sqrt(3)/2 y^10/10 - 1/2 y^11/11
  1196. * + 1/2 y^13/13 - sqrt(3)/2 y^14/14
  1197. * + y^15/15 - sqrt(3)/2 y^16/16 + 1/2 y^17/17 ...
  1198. *
  1199. * If |x| >= 2 we evaluate atan(y) near +∞:
  1200. * atan(y) = π/2 - y^-1 + y^-3/3 - y^-5/5 + y^-7/7 - y^-9/9 ...
  1201. */
  1202. real absx = fabs(x);
  1203. if (absx < (real::R_1() / 2))
  1204. {
  1205. real ret = x, xn = x, mx2 = -x * x;
  1206. for (int i = 3; ; i += 2)
  1207. {
  1208. xn *= mx2;
  1209. real newret = ret + xn / (real)i;
  1210. if (newret == ret)
  1211. break;
  1212. ret = newret;
  1213. }
  1214. return ret;
  1215. }
  1216. real ret = 0;
  1217. if (absx < (real::R_3() / 2))
  1218. {
  1219. real y = real::R_1() - absx;
  1220. real yn = y, my2 = -y * y;
  1221. for (int i = 0; ; i += 2)
  1222. {
  1223. real newret = ret + ldexp(yn / (real)(2 * i + 1), -i - 1);
  1224. yn *= y;
  1225. newret += ldexp(yn / (real)(2 * i + 2), -i - 1);
  1226. yn *= y;
  1227. newret += ldexp(yn / (real)(2 * i + 3), -i - 2);
  1228. if (newret == ret)
  1229. break;
  1230. ret = newret;
  1231. yn *= my2;
  1232. }
  1233. ret = real::R_PI_4() - ret;
  1234. }
  1235. else if (absx < real::R_2())
  1236. {
  1237. real y = (absx - real::R_SQRT3()) / 2;
  1238. real yn = y, my2 = -y * y;
  1239. for (int i = 1; ; i += 6)
  1240. {
  1241. real newret = ret + ((yn / (real)i) / 2);
  1242. yn *= y;
  1243. newret -= (real::R_SQRT3() / 2) * yn / (real)(i + 1);
  1244. yn *= y;
  1245. newret += yn / (real)(i + 2);
  1246. yn *= y;
  1247. newret -= (real::R_SQRT3() / 2) * yn / (real)(i + 3);
  1248. yn *= y;
  1249. newret += (yn / (real)(i + 4)) / 2;
  1250. if (newret == ret)
  1251. break;
  1252. ret = newret;
  1253. yn *= my2;
  1254. }
  1255. ret = real::R_PI_3() + ret;
  1256. }
  1257. else
  1258. {
  1259. real y = inverse(absx);
  1260. real yn = y, my2 = -y * y;
  1261. ret = y;
  1262. for (int i = 3; ; i += 2)
  1263. {
  1264. yn *= my2;
  1265. real newret = ret + yn / (real)i;
  1266. if (newret == ret)
  1267. break;
  1268. ret = newret;
  1269. }
  1270. ret = real::R_PI_2() - ret;
  1271. }
  1272. /* Propagate sign */
  1273. ret.m_sign = x.m_sign;
  1274. return ret;
  1275. }
  1276. template<> inline real atan2(real const &y, real const &x)
  1277. {
  1278. if (!y)
  1279. {
  1280. if (!x.is_negative())
  1281. return y;
  1282. return y.is_negative() ? -real::R_PI() : real::R_PI();
  1283. }
  1284. if (!x)
  1285. {
  1286. return y.is_negative() ? -real::R_PI() : real::R_PI();
  1287. }
  1288. /* FIXME: handle the Inf and NaN cases */
  1289. real z = y / x;
  1290. real ret = atan(z);
  1291. if (x < real::R_0())
  1292. ret += (y > real::R_0()) ? real::R_PI() : -real::R_PI();
  1293. return ret;
  1294. }
  1295. /* Franke’s function, used as a test for interpolation methods */
  1296. template<> inline real franke(real const &x, real const &y)
  1297. {
  1298. /* Compute 9x and 9y */
  1299. real nx = x + x; nx += nx; nx += nx + x;
  1300. real ny = y + y; ny += ny; ny += ny + y;
  1301. /* Temporary variables for the formula */
  1302. real a = nx - real::R_2();
  1303. real b = ny - real::R_2();
  1304. real c = nx + real::R_1();
  1305. real d = ny + real::R_1();
  1306. real e = nx - real(7);
  1307. real f = ny - real::R_3();
  1308. real g = nx - real(4);
  1309. real h = ny - real(7);
  1310. return exp(-(a * a + b * b) * real(0.25)) * real(0.75)
  1311. + exp(-(c * c / real(49) + d * d / real::R_10())) * real(0.75)
  1312. + exp(-(e * e + f * f) * real(0.25)) * real(0.5)
  1313. - exp(-(g * g + h * h)) / real(5);
  1314. }
  1315. /* The Peaks example function from Matlab */
  1316. template<> inline real peaks(real const &x, real const &y)
  1317. {
  1318. real x2 = x * x;
  1319. real y2 = y * y;
  1320. /* 3 * (1-x)^2 * exp(-x^2 - (y+1)^2) */
  1321. real ret = real::R_3()
  1322. * (x2 - x - x + real::R_1())
  1323. * exp(- x2 - y2 - y - y - real::R_1());
  1324. /* -10 * (x/5 - x^3 - y^5) * exp(-x^2 - y^2) */
  1325. ret -= (x + x - real::R_10() * (x2 * x + y2 * y2 * y)) * exp(-x2 - y2);
  1326. /* -1/3 * exp(-(x+1)^2 - y^2) */
  1327. ret -= exp(-x2 - x - x - real::R_1() - y2) / real::R_3();
  1328. return ret;
  1329. }
  1330. template<> inline
  1331. std::ostream& operator <<(std::ostream &s, real const &x)
  1332. {
  1333. bool hex = (s.flags() & std::ios_base::basefield) == std::ios_base::hex;
  1334. s << (hex ? x.xstr() : x.str((int)s.precision()));
  1335. return s;
  1336. }
  1337. template<> inline std::string real::str(int ndigits) const
  1338. {
  1339. std::stringstream ss;
  1340. real x = *this;
  1341. if (x.is_negative())
  1342. {
  1343. ss << '-';
  1344. x = -x;
  1345. }
  1346. if (!x)
  1347. {
  1348. ss << '0';
  1349. return ss.str();
  1350. }
  1351. // Normalise x so that mantissa is in [1..9.999]
  1352. // FIXME: better use int64_t when the cast is implemented
  1353. // FIXME: does not work with R_MAX and probably R_MIN
  1354. int exponent = ceil(log10(x));
  1355. x *= pow(R_10(), -(real)exponent);
  1356. if (ndigits < 1)
  1357. ndigits = 1;
  1358. // Add a bias to simulate some naive rounding
  1359. x += real(4.99f) * pow(R_10(), -(real)(ndigits + 1));
  1360. if (x < R_1())
  1361. {
  1362. x *= R_10();
  1363. exponent--;
  1364. }
  1365. // Print digits
  1366. for (int i = 0; i < ndigits; ++i)
  1367. {
  1368. int digit = (int)floor(x);
  1369. ss << (char)('0' + digit);
  1370. if (i == 0)
  1371. ss << '.';
  1372. x -= real(digit);
  1373. x *= R_10();
  1374. }
  1375. // Remove trailing zeroes
  1376. std::string ret = ss.str();
  1377. ss.str("");
  1378. size_t end = ret.find_last_not_of('0');
  1379. if (end != std::string::npos)
  1380. ss << ret.substr(0, end + 1);
  1381. // Print exponent information
  1382. if (exponent)
  1383. ss << 'e' << (exponent >= 0 ? '+' : '-') << std::abs(exponent);
  1384. return ss.str();
  1385. }
  1386. template<> inline std::string real::xstr() const
  1387. {
  1388. std::stringstream ss;
  1389. if (is_negative())
  1390. ss << '-';
  1391. ss << "0x1." << std::hex << std::setfill('0');
  1392. for (int i = 0; i < bigit_count(); ++i)
  1393. ss << std::setw(8) << m_mantissa[i];
  1394. ss << std::dec;
  1395. // Remove trailing zeroes
  1396. std::string ret = ss.str();
  1397. ss.str("");
  1398. size_t end = ret.find_last_not_of('0');
  1399. if (end != std::string::npos)
  1400. ss << ret.substr(0, end + 1);
  1401. ss << 'p' << m_exponent;
  1402. return ss.str();
  1403. }
  1404. static real load_min()
  1405. {
  1406. real ret = 1;
  1407. return ldexp(ret, std::numeric_limits<real::exponent_t>::min());
  1408. }
  1409. static real load_max()
  1410. {
  1411. /* FIXME: the last bits of the mantissa are not properly handled in this
  1412. * code! So we fallback to a slow but exact method. */
  1413. #if 0
  1414. real ret = 1;
  1415. ret = ldexp(ret, real::TOTAL_BITS - 1) - ret;
  1416. return ldexp(ret, real::EXPONENT_BIAS + 2 - real::TOTAL_BITS);
  1417. #endif
  1418. /* Generates 0x1.ffff..ffffp18446744073709551615 */
  1419. char str[160];
  1420. std::sprintf(str, "0x1.%llx%llx%llx%llx%llx%llx%llx%llxp%lld",
  1421. -1ll, -1ll, -1ll, -1ll, -1ll, -1ll, -1ll, -1ll,
  1422. (long long int)std::numeric_limits<int64_t>::max());
  1423. return real(str);
  1424. }
  1425. static real load_pi()
  1426. {
  1427. /* Approximate π using Machin’s formula: 16*atan(1/5)-4*atan(1/239) */
  1428. real ret = 0, x0 = 5, x1 = 239;
  1429. real const m0 = -x0 * x0, m1 = -x1 * x1, r16 = 16, r4 = 4;
  1430. for (int i = 1; ; i += 2)
  1431. {
  1432. real newret = ret + r16 / (x0 * (real)i) - r4 / (x1 * (real)i);
  1433. if (newret == ret)
  1434. break;
  1435. ret = newret;
  1436. x0 *= m0;
  1437. x1 *= m1;
  1438. }
  1439. return ret;
  1440. }
  1441. } /* namespace lol */