Selaa lähdekoodia

math: build quaternions from rotation matrices and conversely.

legacy
Sam Hocevar sam 13 vuotta sitten
vanhempi
commit
3e9d3e323b
2 muutettua tiedostoa jossa 93 lisäystä ja 67 poistoa
  1. +63
    -0
      src/matrix.cpp
  2. +30
    -67
      src/matrix.h

+ 63
- 0
src/matrix.cpp Näytä tiedosto

@@ -258,6 +258,69 @@ template<> mat4 mat4::rotate(float angle, vec3 v)
return rotate(angle, v.x, v.y, v.z);
}

template<> mat4 mat4::rotate(quat q)
{
mat4 ret(1.0f);
float n = q.norm();

if (!n)
return ret;

float s = 2.0f / n;

ret[0][0] = 1.0f - s * (q.y * q.y + q.z * q.z);
ret[0][1] = s * (q.x * q.y - q.z * q.w);
ret[0][2] = s * (q.x * q.z + q.y * q.w);

ret[1][0] = s * (q.x * q.y + q.z * q.w);
ret[1][1] = 1.0f - s * (q.z * q.z + q.x * q.x);
ret[1][2] = s * (q.y * q.z - q.x * q.w);

ret[2][0] = s * (q.x * q.z - q.y * q.w);
ret[2][1] = s * (q.y * q.z + q.x * q.w);
ret[2][2] = 1.0f - s * (q.x * q.x + q.y * q.y);

return ret;
}

template<> quat::Quat(mat4 const &m)
{
/* See http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/christian.htm for a version with no branches */
float t = m[0][0] + m[1][1] + m[2][2];
if (t > 0)
{
w = 0.5f * sqrtf(1.0f + t);
float s = 0.25f / w;
x = s * (m[2][1] - m[1][2]);
y = s * (m[0][2] - m[2][0]);
z = s * (m[1][0] - m[0][1]);
}
else if (m[0][0] > m[1][1] && m[0][0] > m[2][2])
{
x = 0.5f * sqrt(1.0f + m[0][0] - m[1][1] - m[2][2]);
float s = 0.25f / x;
y = s * (m[1][0] + m[0][1]);
z = s * (m[0][2] + m[2][0]);
w = s * (m[2][1] - m[1][2]);
}
else if (m[1][1] > m[2][2])
{
y = 0.5f * sqrtf(1.0f - m[0][0] + m[1][1] - m[2][2]);
float s = 0.25f / y;
x = s * (m[1][0] + m[0][1]);
z = s * (m[2][1] + m[1][2]);
w = s * (m[0][2] - m[2][0]);
}
else
{
z = 0.5f * sqrtf(1.0f - m[0][0] - m[1][1] + m[2][2]);
float s = 0.25f / z;
x = s * (m[0][2] + m[2][0]);
y = s * (m[2][1] + m[1][2]);
w = s * (m[1][0] - m[0][1]);
}
}

template<> mat4 mat4::lookat(vec3 eye, vec3 center, vec3 up)
{
vec3 v3 = normalize(eye - center);


+ 30
- 67
src/matrix.h Näytä tiedosto

@@ -24,6 +24,25 @@
namespace lol
{

#define VECTOR_TYPES(tname, suffix) \
template <typename T> struct tname; \
typedef tname<half> f16##suffix; \
typedef tname<float> suffix; \
typedef tname<int8_t> i8##suffix; \
typedef tname<uint8_t> u8##suffix; \
typedef tname<int16_t> i16##suffix; \
typedef tname<uint16_t> u16##suffix; \
typedef tname<int32_t> i##suffix; \
typedef tname<uint32_t> u##suffix; \
typedef tname<int64_t> i64##suffix; \
typedef tname<uint64_t> u64##suffix;

VECTOR_TYPES(Vec2, vec2)
VECTOR_TYPES(Vec3, vec3)
VECTOR_TYPES(Vec4, vec4)
VECTOR_TYPES(Quat, quat)
VECTOR_TYPES(Mat4, mat4)

#define VECTOR_OP(op) \
inline type_t operator op(type_t const &val) const \
{ \
@@ -128,7 +147,7 @@ namespace lol
\
inline T norm() const { return sqlen(); }

#define OTHER_OPS(elems) \
#define OTHER_OPS(tname) \
VECTOR_OP(*) \
VECTOR_OP(/) \
\
@@ -138,16 +157,16 @@ namespace lol
BOOL_OP(>, >, true) \
\
template<typename U> \
inline operator Vec##elems<U>() const \
inline operator tname<U>() const \
{ \
Vec##elems<U> ret; \
tname<U> ret; \
for (size_t n = 0; n < sizeof(*this) / sizeof(T); n++) \
ret[n] = static_cast<U>((*this)[n]); \
return ret; \
} \
\
template<typename U> \
friend U dot(Vec##elems<U>, Vec##elems<U>);
friend U dot(tname<U>, tname<U>);

#define SWIZZLE2(e1, e2) \
inline Vec2<T> e1##e2() const \
@@ -210,10 +229,6 @@ namespace lol
#define SWIZZLE4444(e1) \
SWIZZLE444(e1, x); SWIZZLE444(e1, y); SWIZZLE444(e1, z); SWIZZLE444(e1, w);

template <typename T> struct Vec2;
template <typename T> struct Vec3;
template <typename T> struct Vec4;

/*
* 2-element vectors
*/
@@ -227,7 +242,7 @@ template <typename T> struct Vec2
inline Vec2(T _x, T _y) { x = _x; y = _y; }

LINEAR_OPS()
OTHER_OPS(2)
OTHER_OPS(Vec2)

SWIZZLE22(x); SWIZZLE22(y);
SWIZZLE322(x); SWIZZLE322(y);
@@ -242,17 +257,6 @@ template <typename T> struct Vec2
union { T y; T b; T j; };
};

typedef Vec2<half> f16vec2;
typedef Vec2<float> vec2;
typedef Vec2<int8_t> i8vec2;
typedef Vec2<uint8_t> u8vec2;
typedef Vec2<int16_t> i16vec2;
typedef Vec2<uint16_t> u16vec2;
typedef Vec2<int32_t> ivec2;
typedef Vec2<uint32_t> uvec2;
typedef Vec2<int64_t> i64vec2;
typedef Vec2<uint64_t> u64vec2;

/*
* 3-element vectors
*/
@@ -268,7 +272,7 @@ template <typename T> struct Vec3
inline Vec3(T _x, Vec2<T> _yz) { x = _x; y = _yz.x; z = _yz.y; }

LINEAR_OPS()
OTHER_OPS(3)
OTHER_OPS(Vec3)

SWIZZLE23(x); SWIZZLE23(y); SWIZZLE23(z);
SWIZZLE333(x); SWIZZLE333(y); SWIZZLE333(z);
@@ -287,17 +291,6 @@ template <typename T> struct Vec3
union { T z; T c; T k; };
};

typedef Vec3<half> f16vec3;
typedef Vec3<float> vec3;
typedef Vec3<int8_t> i8vec3;
typedef Vec3<uint8_t> u8vec3;
typedef Vec3<int16_t> i16vec3;
typedef Vec3<uint16_t> u16vec3;
typedef Vec3<int32_t> ivec3;
typedef Vec3<uint32_t> uvec3;
typedef Vec3<int64_t> i64vec3;
typedef Vec3<uint64_t> u64vec3;

/*
* 4-element vectors
*/
@@ -317,7 +310,7 @@ template <typename T> struct Vec4
inline Vec4(T _x, Vec3<T> _yzw) : x(_x), y(_yzw.x), z(_yzw.y), w(_yzw.z) { }

LINEAR_OPS()
OTHER_OPS(4)
OTHER_OPS(Vec4)

SWIZZLE24(x); SWIZZLE24(y); SWIZZLE24(z); SWIZZLE24(w);
SWIZZLE344(x); SWIZZLE344(y); SWIZZLE344(z); SWIZZLE344(w);
@@ -334,17 +327,6 @@ template <typename T> struct Vec4
union { T w; T d; T l; };
};

typedef Vec4<half> f16vec4;
typedef Vec4<float> vec4;
typedef Vec4<int8_t> i8vec4;
typedef Vec4<uint8_t> u8vec4;
typedef Vec4<int16_t> i16vec4;
typedef Vec4<uint16_t> u16vec4;
typedef Vec4<int32_t> ivec4;
typedef Vec4<uint32_t> uvec4;
typedef Vec4<int64_t> i64vec4;
typedef Vec4<uint64_t> u64vec4;

/*
* 4-element quaternions
*/
@@ -357,6 +339,8 @@ template <typename T> struct Quat
inline Quat(T val) : x(0), y(0), z(0), w(val) { }
inline Quat(T _x, T _y, T _z, T _w) : x(_x), y(_y), z(_z), w(_w) { }

Quat(Mat4<T> const &m);

LINEAR_OPS()
QUATERNION_OPS()

@@ -386,17 +370,6 @@ static inline Quat<T> operator /(Quat<T> x, Quat<T> const &y)
return x * re(y);
}

typedef Quat<half> f16quat;
typedef Quat<float> quat;
typedef Quat<int8_t> i8quat;
typedef Quat<uint8_t> u8quat;
typedef Quat<int16_t> i16quat;
typedef Quat<uint16_t> u16quat;
typedef Quat<int32_t> iquat;
typedef Quat<uint32_t> uquat;
typedef Quat<int64_t> i64quat;
typedef Quat<uint64_t> u64quat;

/*
* Common operators for all vector types, including quaternions
*/
@@ -406,7 +379,7 @@ typedef Quat<uint64_t> u64quat;
static inline tname<U> operator op(U const &val, tname<T> const &that) \
{ \
tname<U> ret; \
for (unsigned int n = 0; n < sizeof(that) / sizeof(that[0]); n++) \
for (size_t n = 0; n < sizeof(that) / sizeof(that[0]); n++) \
ret[n] = val op that[n]; \
return ret; \
}
@@ -461,6 +434,7 @@ template <typename T> struct Mat4
static Mat4<T> translate(Vec3<T> v);
static Mat4<T> rotate(T angle, T x, T y, T z);
static Mat4<T> rotate(T angle, Vec3<T> v);
static Mat4<T> rotate(Quat<T> q);

static inline Mat4<T> translate(Mat4<T> mat, Vec3<T> v)
{
@@ -550,17 +524,6 @@ template <typename T> struct Mat4
Vec4<T> v[4];
};

typedef Mat4<half> f16mat4;
typedef Mat4<float> mat4;
typedef Mat4<int8_t> i8mat4;
typedef Mat4<uint8_t> u8mat4;
typedef Mat4<int16_t> i16mat4;
typedef Mat4<uint16_t> u16mat4;
typedef Mat4<int32_t> imat4;
typedef Mat4<uint32_t> umat4;
typedef Mat4<int64_t> i64mat4;
typedef Mat4<uint64_t> u64mat4;

} /* namespace lol */

#endif // __LOL_MATRIX_H__


Ladataan…
Peruuta
Tallenna