| @@ -159,47 +159,47 @@ struct polynomial | |||
| T const &c = m_coefficients[1]; | |||
| T const &d = m_coefficients[0]; | |||
| /* Using x = (X - k) so that p2(X) = p(X - k) = aX³ + 0×X² + mX + n */ | |||
| /* Find k, m and n such that: | |||
| * q(x) = p(x - k) / a = x³ + amx + n */ | |||
| T const k = b / (T(3) * a); | |||
| T const m = c - b * k; | |||
| T const n = (T(2) / T(3) * b * k - c) * k + d; | |||
| T const n = ((T(2) / T(3) * b * k - c) * k + d) / a; | |||
| /* Assuming X = u + v and 3uv = -m, then | |||
| * p2(u + v) = a(u + v) + n | |||
| /* Assuming x = u + v and 3uv = -m, then | |||
| * q(u + v) = a(u + v) + n | |||
| * | |||
| * We then need to solve the following system: | |||
| * u³v³ = -m³/27 | |||
| * u³ + v³ = -n/a | |||
| * u³ + v³ = -n | |||
| * | |||
| * which gives : | |||
| * u³ - v³ = √((n/a)² + 4m³/27) | |||
| * u³ + v³ = -n/a | |||
| * u³ - v³ = √(n² + 4m³/27) | |||
| * u³ + v³ = -n | |||
| * | |||
| * u³ = (-n/a + √((n/a)² + 4m³/27))/2 | |||
| * v³ = (-n/a - √((n/a)² + 4m³/27))/2 | |||
| * u³ = (-n + √(n² + 4m³/27)) / 2 | |||
| * v³ = (-n - √(n² + 4m³/27)) / 2 | |||
| */ | |||
| T const delta = (n * n) / (a * a) + T(4) * m * m * m / T(27); | |||
| T const delta = n * n + T(4) / T(27) * m * m * m; | |||
| /* Because 3×u×v = -m and m is not complex | |||
| /* Because 3uv = -m and m is not complex | |||
| * angle(u³) + angle(v³) must equal 0. | |||
| * | |||
| * This is why we compute u³ and v³ by norm and angle separately | |||
| * instead of using a std::complex class | |||
| */ | |||
| * instead of using a std::complex class */ | |||
| T u3_norm, u3_angle; | |||
| T v3_norm, v3_angle; | |||
| if (delta < 0) | |||
| { | |||
| v3_norm = u3_norm = sqrt((-n/a) * (-n/a) + abs(delta)) / T(2); | |||
| v3_norm = u3_norm = sqrt(n * n + abs(delta)) / T(2); | |||
| u3_angle = atan2(sqrt(abs(delta)), -n/a); | |||
| u3_angle = atan2(sqrt(abs(delta)), -n); | |||
| v3_angle = -u3_angle; | |||
| } | |||
| else | |||
| { | |||
| u3_norm = (-n/a + sqrt(delta)) / T(2); | |||
| v3_norm = (-n/a - sqrt(delta)) / T(2); | |||
| u3_norm = (-n + sqrt(delta)) / T(2); | |||
| v3_norm = (-n - sqrt(delta)) / T(2); | |||
| u3_angle = u3_norm >= 0 ? 0 : pi; | |||
| v3_angle = v3_norm >= 0 ? 0 : -pi; | |||
| @@ -210,14 +210,13 @@ struct polynomial | |||
| T solutions[3]; | |||
| for (int i = 0 ; i < 3 ; ++i) | |||
| for (int i : { 0, 1, 2 }) | |||
| { | |||
| T u_angle = (u3_angle + i * T(2) * pi) / T(3); | |||
| T v_angle = (v3_angle - i * T(2) * pi) / T(3); | |||
| T u_angle = (u3_angle + T(2 * i) * pi) / T(3); | |||
| T v_angle = (v3_angle - T(2 * i) * pi) / T(3); | |||
| solutions[i] = | |||
| pow(u3_norm, T(1) / T(3)) * cos(u_angle) + | |||
| pow(v3_norm, T(1) / T(3)) * cos(v_angle); | |||
| solutions[i] = pow(u3_norm, T(1) / T(3)) * cos(u_angle) | |||
| + pow(v3_norm, T(1) / T(3)) * cos(v_angle); | |||
| } | |||
| if (delta < 0) // 3 real solutions | |||