|
|
@@ -159,47 +159,47 @@ struct polynomial |
|
|
|
T const &c = m_coefficients[1]; |
|
|
|
T const &d = m_coefficients[0]; |
|
|
|
|
|
|
|
/* Using x = (X - k) so that p2(X) = p(X - k) = aX³ + 0×X² + mX + n */ |
|
|
|
/* Find k, m and n such that: |
|
|
|
* q(x) = p(x - k) / a = x³ + amx + n */ |
|
|
|
T const k = b / (T(3) * a); |
|
|
|
T const m = c - b * k; |
|
|
|
T const n = (T(2) / T(3) * b * k - c) * k + d; |
|
|
|
T const n = ((T(2) / T(3) * b * k - c) * k + d) / a; |
|
|
|
|
|
|
|
/* Assuming X = u + v and 3uv = -m, then |
|
|
|
* p2(u + v) = a(u + v) + n |
|
|
|
/* Assuming x = u + v and 3uv = -m, then |
|
|
|
* q(u + v) = a(u + v) + n |
|
|
|
* |
|
|
|
* We then need to solve the following system: |
|
|
|
* u³v³ = -m³/27 |
|
|
|
* u³ + v³ = -n/a |
|
|
|
* u³ + v³ = -n |
|
|
|
* |
|
|
|
* which gives : |
|
|
|
* u³ - v³ = √((n/a)² + 4m³/27) |
|
|
|
* u³ + v³ = -n/a |
|
|
|
* u³ - v³ = √(n² + 4m³/27) |
|
|
|
* u³ + v³ = -n |
|
|
|
* |
|
|
|
* u³ = (-n/a + √((n/a)² + 4m³/27))/2 |
|
|
|
* v³ = (-n/a - √((n/a)² + 4m³/27))/2 |
|
|
|
* u³ = (-n + √(n² + 4m³/27)) / 2 |
|
|
|
* v³ = (-n - √(n² + 4m³/27)) / 2 |
|
|
|
*/ |
|
|
|
T const delta = (n * n) / (a * a) + T(4) * m * m * m / T(27); |
|
|
|
T const delta = n * n + T(4) / T(27) * m * m * m; |
|
|
|
|
|
|
|
/* Because 3×u×v = -m and m is not complex |
|
|
|
/* Because 3uv = -m and m is not complex |
|
|
|
* angle(u³) + angle(v³) must equal 0. |
|
|
|
* |
|
|
|
* This is why we compute u³ and v³ by norm and angle separately |
|
|
|
* instead of using a std::complex class |
|
|
|
*/ |
|
|
|
* instead of using a std::complex class */ |
|
|
|
T u3_norm, u3_angle; |
|
|
|
T v3_norm, v3_angle; |
|
|
|
|
|
|
|
if (delta < 0) |
|
|
|
{ |
|
|
|
v3_norm = u3_norm = sqrt((-n/a) * (-n/a) + abs(delta)) / T(2); |
|
|
|
v3_norm = u3_norm = sqrt(n * n + abs(delta)) / T(2); |
|
|
|
|
|
|
|
u3_angle = atan2(sqrt(abs(delta)), -n/a); |
|
|
|
u3_angle = atan2(sqrt(abs(delta)), -n); |
|
|
|
v3_angle = -u3_angle; |
|
|
|
} |
|
|
|
else |
|
|
|
{ |
|
|
|
u3_norm = (-n/a + sqrt(delta)) / T(2); |
|
|
|
v3_norm = (-n/a - sqrt(delta)) / T(2); |
|
|
|
u3_norm = (-n + sqrt(delta)) / T(2); |
|
|
|
v3_norm = (-n - sqrt(delta)) / T(2); |
|
|
|
|
|
|
|
u3_angle = u3_norm >= 0 ? 0 : pi; |
|
|
|
v3_angle = v3_norm >= 0 ? 0 : -pi; |
|
|
@@ -210,14 +210,13 @@ struct polynomial |
|
|
|
|
|
|
|
T solutions[3]; |
|
|
|
|
|
|
|
for (int i = 0 ; i < 3 ; ++i) |
|
|
|
for (int i : { 0, 1, 2 }) |
|
|
|
{ |
|
|
|
T u_angle = (u3_angle + i * T(2) * pi) / T(3); |
|
|
|
T v_angle = (v3_angle - i * T(2) * pi) / T(3); |
|
|
|
T u_angle = (u3_angle + T(2 * i) * pi) / T(3); |
|
|
|
T v_angle = (v3_angle - T(2 * i) * pi) / T(3); |
|
|
|
|
|
|
|
solutions[i] = |
|
|
|
pow(u3_norm, T(1) / T(3)) * cos(u_angle) + |
|
|
|
pow(v3_norm, T(1) / T(3)) * cos(v_angle); |
|
|
|
solutions[i] = pow(u3_norm, T(1) / T(3)) * cos(u_angle) |
|
|
|
+ pow(v3_norm, T(1) / T(3)) * cos(v_angle); |
|
|
|
} |
|
|
|
|
|
|
|
if (delta < 0) // 3 real solutions |
|
|
|