| @@ -137,16 +137,16 @@ struct polynomial | |||
| if (delta < T(0)) | |||
| { | |||
| return array<T> {}; | |||
| return array<T> {}; | |||
| } | |||
| else if (delta > T(0)) | |||
| { | |||
| T const sqrt_delta = sqrt(delta); | |||
| return array<T> { -k - sqrt_delta, -k + sqrt_delta }; | |||
| T const sqrt_delta = sqrt(delta); | |||
| return array<T> { -k - sqrt_delta, -k + sqrt_delta }; | |||
| } | |||
| else | |||
| { | |||
| return array<T> { -k }; | |||
| return array<T> { -k }; | |||
| } | |||
| } | |||
| else if (degree() == 3) | |||
| @@ -159,25 +159,33 @@ struct polynomial | |||
| T const &c = m_coefficients[1]; | |||
| T const &d = m_coefficients[0]; | |||
| /* Find k, m and n such that: | |||
| * q(x) = p(x - k) / a = x³ + amx + n */ | |||
| /* Find k, m, and n such that p(x - k) / a = x³ + mx + n | |||
| * q(x) = p(x - k) / a | |||
| * = x³ + (b/a-3k) x² + ((c-2bk)/a+3k²) x + (d-ck+bk²)/a-k³ | |||
| * | |||
| * So we want k = b/3a and thus: | |||
| * q(x) = x³ + (c-bk)/a x + (d-ck+2bk²/3)/a | |||
| * | |||
| * k = b / 3a | |||
| * m = (c - bk) / a | |||
| * n = (d - ck + 2bk²/3) / a */ | |||
| T const k = b / (T(3) * a); | |||
| T const m = c - b * k; | |||
| T const m = (c - b * k) / a; | |||
| T const n = ((T(2) / T(3) * b * k - c) * k + d) / a; | |||
| /* Assuming x = u + v and 3uv = -m, then | |||
| * q(u + v) = a(u + v) + n | |||
| /* Let x = u + v, such that 3uv = -m, then: | |||
| * q(u + v) = u³ + v³ + n | |||
| * | |||
| * We then need to solve the following system: | |||
| * u³v³ = -m³/27 | |||
| * u³ + v³ = -n | |||
| * | |||
| * which gives : | |||
| * u³ - v³ = √(n² + 4m³/27) | |||
| * Δ = n² + 4m³/27 | |||
| * u³ - v³ = √Δ | |||
| * u³ + v³ = -n | |||
| * | |||
| * u³ = (-n + √(n² + 4m³/27)) / 2 | |||
| * v³ = (-n - √(n² + 4m³/27)) / 2 | |||
| * u³,v³ = (-n ± √Δ) / 2 | |||
| */ | |||
| T const delta = n * n + T(4) / T(27) * m * m * m; | |||
| @@ -186,26 +194,25 @@ struct polynomial | |||
| * | |||
| * This is why we compute u³ and v³ by norm and angle separately | |||
| * instead of using a std::complex class */ | |||
| T u3_norm, u3_angle; | |||
| T v3_norm, v3_angle; | |||
| T u_norm, u3_angle; | |||
| T v_norm, v3_angle; | |||
| if (delta < 0) | |||
| { | |||
| v3_norm = u3_norm = sqrt(n * n + abs(delta)) / T(2); | |||
| v_norm = u_norm = sqrt(m / T(-3)); | |||
| u3_angle = atan2(sqrt(abs(delta)), -n); | |||
| u3_angle = atan2(sqrt(-delta), -n); | |||
| v3_angle = -u3_angle; | |||
| } | |||
| else | |||
| { | |||
| u3_norm = (-n + sqrt(delta)) / T(2); | |||
| v3_norm = (-n - sqrt(delta)) / T(2); | |||
| T const sqrt_delta = sqrt(delta); | |||
| u3_angle = u3_norm >= 0 ? 0 : pi; | |||
| v3_angle = v3_norm >= 0 ? 0 : -pi; | |||
| u_norm = cbrt(abs(n - sqrt_delta) / T(2)); | |||
| v_norm = cbrt(abs(n + sqrt_delta) / T(2)); | |||
| u3_norm = abs(u3_norm); | |||
| v3_norm = abs(v3_norm); | |||
| u3_angle = (n >= sqrt_delta) ? pi : 0; | |||
| v3_angle = (n <= -sqrt_delta) ? 0 : -pi; | |||
| } | |||
| T solutions[3]; | |||
| @@ -215,8 +222,7 @@ struct polynomial | |||
| T u_angle = (u3_angle + T(2 * i) * pi) / T(3); | |||
| T v_angle = (v3_angle - T(2 * i) * pi) / T(3); | |||
| solutions[i] = pow(u3_norm, T(1) / T(3)) * cos(u_angle) | |||
| + pow(v3_norm, T(1) / T(3)) * cos(v_angle); | |||
| solutions[i] = u_norm * cos(u_angle) + v_norm * cos(v_angle); | |||
| } | |||
| if (delta < 0) // 3 real solutions | |||
| @@ -227,7 +233,7 @@ struct polynomial | |||
| if (delta > 0) // 1 real solution | |||
| return array<T> { solutions[0] - k }; | |||
| if (u3_norm > 0) // 2 real solutions | |||
| if (u_norm > 0) // 2 real solutions | |||
| return array<T> { solutions[0] - k, | |||
| solutions[1] - k }; | |||