Pārlūkot izejas kodu

Fix issues in real::sqrt() and other methods.

Now that the exponent is no longer biased, it is a signed number, and we
need to account for that when dividing it and expecting rounding rules to
behave in a certain way.
legacy
Sam Hocevar pirms 7 gadiem
vecāks
revīzija
8ffc3ccae2
1 mainītis faili ar 24 papildinājumiem un 19 dzēšanām
  1. +24
    -19
      src/math/real.cpp

+ 24
- 19
src/math/real.cpp Parādīt failu

@@ -681,14 +681,14 @@ template<> real inverse(real const &x)
}

/* Use the system's float inversion to approximate 1/x */
union { float f; uint32_t x; } u = { 1.0f }, v = { 1.0f };
v.x |= x.m_mantissa[0] >> 9;
v.f = 1.0f / v.f;
union { float f; uint32_t x; } u = { 1.0f };
u.x |= x.m_mantissa[0] >> 9;
u.f = 1.0f / u.f;

ret.m_mantissa.resize(x.m_mantissa.count());
ret.m_mantissa[0] = v.x << 9;
ret.m_mantissa[0] = u.x << 9;
ret.m_sign = x.m_sign;
ret.m_exponent = -x.m_exponent + (v.x >> 23) - (u.x >> 23);
ret.m_exponent = -x.m_exponent + (u.x >> 23) - 0x7f;

/* FIXME: 1+log2(BIGIT_COUNT) steps of Newton-Raphson seems to be enough for
* convergence, but this hasn't been checked seriously. */
@@ -712,26 +712,27 @@ template<> real sqrt(real const &x)
return ret;
}

int tweak = x.m_exponent & 1;

/* Use the system's float inversion to approximate 1/sqrt(x). First
* we construct a float in the [1..4[ range that has roughly the same
* mantissa as our real. Its exponent is 0 or 1, depending on the
* parity of x’s exponent. The final exponent is 0, -1 or -2. We use
* the final exponent and final mantissa to pre-fill the result. */
union { float f; uint32_t x; } u = { 1.0f }, v = { 2.0f };
v.x -= ((x.m_exponent & 1) ^ 1) << 23;
v.x |= x.m_mantissa[0] >> 9;
v.f = 1.0f / sqrtf(v.f);
union { float f; uint32_t x; } u = { 1.0f };
u.x += tweak << 23;
u.x |= x.m_mantissa[0] >> 9;
u.f = 1.0f / sqrtf(u.f);

real ret;
ret.m_mantissa.resize(x.m_mantissa.count());
ret.m_mantissa[0] = v.x << 9;
ret.m_mantissa[0] = u.x << 9;

/* FIXME FIXME FIXME: this is broken */
ret.m_exponent = -x.m_exponent / 2 + (v.x >> 23) - (u.x >> 23);
ret.m_exponent = -(x.m_exponent - tweak) / 2 + (u.x >> 23) - 0x7f;

/* FIXME: 1+log2(bigit_count()) steps of Newton-Raphson seems to be enough for
* convergence, but this hasn't been checked seriously. */
for (int i = 1; i <= 1024 * x.bigit_count(); i *= 2)
for (int i = 1; i <= x.bigit_count(); i *= 2)
{
ret = ret * (real::R_3() - ret * ret * x);
--ret.m_exponent;
@@ -746,20 +747,24 @@ template<> real cbrt(real const &x)
if (!x.m_mantissa.count())
return x;

int tweak = x.m_exponent % 3;
if (tweak < 0)
tweak += 3;

/* Use the system's float inversion to approximate cbrt(x). First
* we construct a float in the [1..8[ range that has roughly the same
* mantissa as our real. Its exponent is 0, 1 or 2, depending on the
* value of x. The final exponent is 0 or 1 (special case). We use
* the final exponent and final mantissa to pre-fill the result. */
union { float f; uint32_t x; } u = { 1.0f }, v = { 1.0f };
v.x += (x.m_exponent % 3) << 23;
v.x |= x.m_mantissa[0] >> 9;
v.f = powf(v.f, 0.33333333333333333f);
union { float f; uint32_t x; } u = { 1.0f };
u.x += tweak << 23;
u.x |= x.m_mantissa[0] >> 9;
u.f = powf(u.f, 0.33333333333333333f);

real ret;
ret.m_mantissa.resize(x.m_mantissa.count());
ret.m_mantissa[0] = v.x << 9;
ret.m_exponent = x.m_exponent / 3 + (v.x >> 23) - (u.x >> 23);
ret.m_mantissa[0] = u.x << 9;
ret.m_exponent = (x.m_exponent - tweak) / 3 + (u.x >> 23) - 0x7f;
ret.m_sign = x.m_sign;

/* FIXME: 1+log2(bigit_count()) steps of Newton-Raphson seems to be enough


Notiek ielāde…
Atcelt
Saglabāt