| @@ -151,6 +151,8 @@ struct polynomial | |||
| } | |||
| else if (degree() == 3) | |||
| { | |||
| static T const pi = acos(T(-1)); | |||
| /* p(x) = ax³ + bx² + cx + d */ | |||
| T const &a = m_coefficients[3]; | |||
| T const &b = m_coefficients[2]; | |||
| @@ -176,31 +178,31 @@ struct polynomial | |||
| * u³ = (-n/a + √((n/a)² + 4m³/27))/2 | |||
| * v³ = (-n/a - √((n/a)² + 4m³/27))/2 | |||
| */ | |||
| T const delta = (n * n) / (a * a) + 4.f * m * m * m / 27.f; | |||
| T const delta = (n * n) / (a * a) + T(4) * m * m * m / T(27); | |||
| /* Because 3×u×v = -m and m is not complex | |||
| * angle(u³) + angle(v³) must equal 0. | |||
| * | |||
| * This is why we compute u³ and v³ by norm and angle separately instead of | |||
| * using a std::complex class | |||
| * This is why we compute u³ and v³ by norm and angle separately | |||
| * instead of using a std::complex class | |||
| */ | |||
| T u3_norm, u3_angle; | |||
| T v3_norm, v3_angle; | |||
| if (delta < 0) | |||
| { | |||
| v3_norm = u3_norm = sqrt((-n/a) * (-n/a) + abs(delta)) / 2.f; | |||
| v3_norm = u3_norm = sqrt((-n/a) * (-n/a) + abs(delta)) / T(2); | |||
| u3_angle = atan2(sqrt(abs(delta)), -n/a); | |||
| v3_angle = -u3_angle; | |||
| } | |||
| else | |||
| { | |||
| u3_norm = (-n/a + sqrt(delta)) / 2.f; | |||
| v3_norm = (-n/a - sqrt(delta)) / 2.f; | |||
| u3_norm = (-n/a + sqrt(delta)) / T(2); | |||
| v3_norm = (-n/a - sqrt(delta)) / T(2); | |||
| u3_angle = u3_norm >= 0 ? 0 : M_PI; | |||
| v3_angle = v3_norm >= 0 ? 0 : -M_PI; | |||
| u3_angle = u3_norm >= 0 ? 0 : pi; | |||
| v3_angle = v3_norm >= 0 ? 0 : -pi; | |||
| u3_norm = abs(u3_norm); | |||
| v3_norm = abs(v3_norm); | |||
| @@ -210,22 +212,28 @@ struct polynomial | |||
| for (int i = 0 ; i < 3 ; ++i) | |||
| { | |||
| T u_angle = u3_angle / 3.f + i * 2.f * M_PI / 3.f; | |||
| T v_angle = v3_angle / 3.f - i * 2.f * M_PI / 3.f; | |||
| T u_angle = (u3_angle + i * T(2) * pi) / T(3); | |||
| T v_angle = (v3_angle - i * T(2) * pi) / T(3); | |||
| solutions[i] = | |||
| pow(u3_norm, 1.f / 3.f) * cos(u_angle) + | |||
| pow(v3_norm, 1.f / 3.f) * cos(v_angle); | |||
| pow(u3_norm, T(1) / T(3)) * cos(u_angle) + | |||
| pow(v3_norm, T(1) / T(3)) * cos(v_angle); | |||
| } | |||
| if (delta < 0) // 3 real solutions | |||
| return array<T> {solutions[0] - k, solutions[1] - k, solutions[2] - k}; | |||
| else if (delta > 0) // 1 real solution | |||
| return array<T> {solutions[0] - k}; | |||
| else if (u3_norm > 0) // 2 real solutions | |||
| return array<T> {solutions[0] - k, solutions[1] - k}; | |||
| else // one triple solution | |||
| return array<T> {solutions[0] - k}; | |||
| return array<T> { solutions[0] - k, | |||
| solutions[1] - k, | |||
| solutions[2] - k }; | |||
| if (delta > 0) // 1 real solution | |||
| return array<T> { solutions[0] - k }; | |||
| if (u3_norm > 0) // 2 real solutions | |||
| return array<T> { solutions[0] - k, | |||
| solutions[1] - k }; | |||
| // one triple solution | |||
| return array<T> { solutions[0] - k }; | |||
| } | |||
| /* It is an error to reach this point. */ | |||