|
- //
- // Lol Engine
- //
- // Copyright © 2010—2019 Sam Hocevar <sam@hocevar.net>
- //
- // Lol Engine is free software. It comes without any warranty, to
- // the extent permitted by applicable law. You can redistribute it
- // and/or modify it under the terms of the Do What the Fuck You Want
- // to Public License, Version 2, as published by the WTFPL Task Force.
- // See http://www.wtfpl.net/ for more details.
- //
-
- #include <lol/engine-internal.h>
-
- #include <new>
- #include <string>
- #include <sstream>
- #include <iomanip>
- #include <cstring>
- #include <cstdlib>
-
- namespace lol
- {
-
- /*
- * First handle explicit specialisation of our templates.
- */
-
- template<> int real::DEFAULT_BIGIT_COUNT = 16;
-
- /*
- * Initialisation order is not important because everything is
- * done on demand, but here is the dependency list anyway:
- * - fast_log() requires R_1
- * - log() requires R_LN2
- * - inverse() require R_2
- * - exp() requires R_0, R_1, R_LN2
- * - sqrt() requires R_3
- */
-
- static real fast_log(real const &x);
-
- static real load_min();
- static real load_max();
- static real load_pi();
-
- /* These getters do not need caching, their return values are small */
- template<> real const real::R_0() { return real(); }
- template<> real const real::R_INF() { real ret; ret.m_inf = true; return ret; }
- template<> real const real::R_NAN() { real ret; ret.m_nan = true; return ret; }
-
- #define LOL_CONSTANT_GETTER(name, value) \
- template<> real const& real::name() \
- { \
- static real ret; \
- static int prev_bigit_count = -1; \
- /* If the default bigit count has changed, we must recompute
- * the value with the desired precision. */ \
- if (prev_bigit_count != DEFAULT_BIGIT_COUNT) \
- { \
- ret = (value); \
- prev_bigit_count = DEFAULT_BIGIT_COUNT; \
- } \
- return ret; \
- }
-
- LOL_CONSTANT_GETTER(R_1, real(1.0));
- LOL_CONSTANT_GETTER(R_2, real(2.0));
- LOL_CONSTANT_GETTER(R_3, real(3.0));
- LOL_CONSTANT_GETTER(R_10, real(10.0));
-
- LOL_CONSTANT_GETTER(R_MIN, load_min());
- LOL_CONSTANT_GETTER(R_MAX, load_max());
-
- LOL_CONSTANT_GETTER(R_LN2, fast_log(R_2()));
- LOL_CONSTANT_GETTER(R_LN10, log(R_10()));
- LOL_CONSTANT_GETTER(R_LOG2E, inverse(R_LN2()));
- LOL_CONSTANT_GETTER(R_LOG10E, inverse(R_LN10()));
- LOL_CONSTANT_GETTER(R_E, exp(R_1()));
- LOL_CONSTANT_GETTER(R_PI, load_pi());
- LOL_CONSTANT_GETTER(R_PI_2, R_PI() / 2);
- LOL_CONSTANT_GETTER(R_PI_3, R_PI() / R_3());
- LOL_CONSTANT_GETTER(R_PI_4, R_PI() / 4);
- LOL_CONSTANT_GETTER(R_TAU, R_PI() + R_PI());
- LOL_CONSTANT_GETTER(R_1_PI, inverse(R_PI()));
- LOL_CONSTANT_GETTER(R_2_PI, R_1_PI() * 2);
- LOL_CONSTANT_GETTER(R_2_SQRTPI, inverse(sqrt(R_PI())) * 2);
- LOL_CONSTANT_GETTER(R_SQRT2, sqrt(R_2()));
- LOL_CONSTANT_GETTER(R_SQRT3, sqrt(R_3()));
- LOL_CONSTANT_GETTER(R_SQRT1_2, R_SQRT2() / 2);
-
- #undef LOL_CONSTANT_GETTER
-
- /*
- * Now carry on with the rest of the Real class.
- */
-
- template<> real::Real(int32_t i) { new(this) real((double)i); }
- template<> real::Real(uint32_t i) { new(this) real((double)i); }
- template<> real::Real(float f) { new(this) real((double)f); }
-
- template<> real::Real(int64_t i)
- {
- new(this) real((uint64_t)lol::abs(i));
- m_sign = i < 0;
- }
-
- template<> real::Real(uint64_t i)
- {
- new(this) real();
- if (i)
- {
- /* Only works with 32-bit bigits for now */
- static_assert(sizeof(bigit_t) == 4, "bigit_t must be 32-bit");
-
- int delta = 1;
- while ((i >> 63) == 0)
- {
- i <<= 1;
- ++delta;
- }
- i <<= 1; /* Remove implicit one */
-
- m_exponent = 64 - delta;
- m_mantissa.resize(DEFAULT_BIGIT_COUNT);
- m_mantissa[0] = (bigit_t)(i >> 32);
- if (bigit_count() > 1)
- m_mantissa[1] = (bigit_t)i;
- }
- }
-
- template<> real::Real(double d)
- {
- union { double d; uint64_t x; } u = { d };
-
- m_sign = bool(u.x >> 63);
-
- exponent_t exponent = (u.x << 1) >> 53;
-
- switch (exponent)
- {
- case 0x00: /* +0 / -0 */
- break;
- case 0x7ff: /* Inf/NaN (FIXME: handle NaN!) */
- m_inf = true;
- break;
- default:
- /* Only works with 32-bit bigits for now */
- static_assert(sizeof(bigit_t) == 4, "bigit_t must be 32-bit");
- m_exponent = exponent - ((1 << 10) - 1);
- m_mantissa.resize(DEFAULT_BIGIT_COUNT);
- m_mantissa[0] = (bigit_t)(u.x >> 20);
- if (bigit_count() > 1)
- m_mantissa[1] = (bigit_t)(u.x << 12);
- break;
- }
- }
-
- template<> real::Real(long double f)
- {
- /* We don’t know the long double layout, so we get rid of the
- * exponent, then load it into a real in two steps. */
- int exponent;
- f = frexpl(f, &exponent);
- new(this) real(double(f));
- *this += double(f - (long double)*this);
- m_exponent += exponent;
- }
-
- template<> real::operator float() const { return (float)(double)*this; }
- template<> real::operator int32_t() const { return (int32_t)(double)floor(*this); }
- template<> real::operator uint32_t() const { return (uint32_t)(double)floor(*this); }
-
- template<> real::operator uint64_t() const
- {
- uint32_t msb = (uint32_t)ldexp(*this, -32);
- uint64_t ret = ((uint64_t)msb << 32)
- | (uint32_t)(*this - ldexp((real)msb, 32));
- return ret;
- }
-
- template<> real::operator int64_t() const
- {
- /* If number is positive, convert it to uint64_t first. If it is
- * negative, switch its sign first. */
- return is_negative() ? -(int64_t)-*this : (int64_t)(uint64_t)*this;
- }
-
- template<> real::operator double() const
- {
- union { double d; uint64_t x; } u;
-
- /* Get sign */
- u.x = (is_negative() ? 1 : 0) << 11;
-
- /* Compute new exponent (FIXME: handle Inf/NaN) */
- int64_t e = m_exponent + ((1 << 10) - 1);
-
- if (is_zero())
- u.x <<= 52;
- else if (e < 0) /* if exponent underflows, set to zero */
- u.x <<= 52;
- else if (e >= 0x7ff)
- {
- u.x |= 0x7ff;
- u.x <<= 52;
- }
- else
- {
- u.x |= e;
-
- /* Store mantissa if necessary */
- u.x <<= 32;
- if (bigit_count() > 0)
- u.x |= m_mantissa[0];
- u.x <<= 20;
- if (bigit_count() > 1)
- {
- u.x |= m_mantissa[1] >> 12;
- /* Rounding */
- u.x += (m_mantissa[1] >> 11) & 1;
- }
- }
-
- return u.d;
- }
-
- template<> real::operator long double() const
- {
- double hi = double(*this);
- double lo = double(*this - hi);
- return (long double)(hi) + (long double)(lo);
- }
-
- /*
- * Create a real number from an ASCII representation
- */
- template<> real::Real(char const *str)
- {
- real ret = 0;
- exponent_t exponent = 0;
- bool hex = false, comma = false, nonzero = false, negative = false, finished = false;
-
- for (char const *p = str; *p && !finished; p++)
- {
- switch (*p)
- {
- case '-':
- case '+':
- if (p != str)
- break;
- negative = (*p == '-');
- break;
- case '.':
- if (comma)
- finished = true;
- comma = true;
- break;
- case 'x':
- case 'X':
- /* This character is only valid for 0x... and 0X... numbers */
- if (p != str + 1 || str[0] != '0')
- finished = true;
- hex = true;
- break;
- case 'p':
- case 'P':
- if (hex)
- exponent += atoi(p + 1);
- finished = true;
- break;
- case 'e':
- case 'E':
- if (!hex)
- {
- exponent += atoi(p + 1);
- finished = true;
- break;
- }
- LOL_ATTR_FALLTHROUGH
- case 'a': case 'b': case 'c': case 'd': case 'f':
- case 'A': case 'B': case 'C': case 'D': case 'F':
- case '0': case '1': case '2': case '3': case '4':
- case '5': case '6': case '7': case '8': case '9':
- if (nonzero)
- {
- /* Multiply ret by 10 or 16 depending the base. */
- if (!hex)
- {
- real x = ret + ret;
- ret = x + x + ret;
- }
- ret.m_exponent += hex ? 4 : 1;
- }
- if (*p != '0')
- {
- ret += (*p >= 'a' && *p <= 'f') ? (int)(*p - 'a' + 10)
- : (*p >= 'A' && *p <= 'F') ? (int)(*p - 'A' + 10)
- : (int)(*p - '0');
- nonzero = true;
- }
- if (comma)
- exponent -= hex ? 4 : 1;
- break;
- default:
- finished = true;
- break;
- }
- }
-
- if (hex)
- ret.m_exponent += exponent;
- else if (exponent)
- ret *= pow(R_10(), (real)exponent);
-
- if (negative)
- ret = -ret;
-
- *this = ret;
- }
-
- template<> real real::operator +() const
- {
- return *this;
- }
-
- template<> real real::operator -() const
- {
- real ret = *this;
- ret.m_sign ^= true;
- return ret;
- }
-
- template<> real real::operator +(real const &x) const
- {
- if (x.is_zero())
- return *this;
-
- if (is_zero())
- return x;
-
- /* Ensure both arguments are positive. Otherwise, switch signs,
- * or replace + with -. */
- if (is_negative())
- return -(-*this + -x);
-
- if (x.is_negative())
- return *this - (-x);
-
- /* Ensure *this has the larger exponent (no need for the mantissa to
- * be larger, as in subtraction). Otherwise, switch. */
- if (m_exponent < x.m_exponent)
- return x + *this;
-
- int64_t e1 = m_exponent;
- int64_t e2 = x.m_exponent;
-
- int64_t bigoff = (e1 - e2) / bigit_bits();
- int64_t off = e1 - e2 - bigoff * bigit_bits();
-
- /* FIXME: ensure we have the same number of bigits */
- if (bigoff > bigit_count())
- return *this;
-
- real ret;
- ret.m_mantissa.resize(bigit_count());
- ret.m_exponent = m_exponent;
-
- uint64_t carry = 0;
- for (int i = bigit_count(); i--; )
- {
- carry += m_mantissa[i];
- if (i - bigoff >= 0)
- carry += x.m_mantissa[i - bigoff] >> off;
-
- if (off && i - bigoff > 0)
- carry += (x.m_mantissa[i - bigoff - 1] << (bigit_bits() - off)) & 0xffffffffu;
- else if (i - bigoff == 0)
- carry += (uint64_t)1 << (bigit_bits() - off);
-
- ret.m_mantissa[i] = (uint32_t)carry;
- carry >>= bigit_bits();
- }
-
- /* Renormalise in case we overflowed the mantissa */
- if (carry)
- {
- carry--;
- for (int i = 0; i < bigit_count(); ++i)
- {
- uint32_t tmp = ret.m_mantissa[i];
- ret.m_mantissa[i] = ((uint32_t)carry << (bigit_bits() - 1))
- | (tmp >> 1);
- carry = tmp & 1u;
- }
- ret.m_exponent++;
- }
-
- return ret;
- }
-
- template<> real real::operator -(real const &x) const
- {
- if (x.is_zero())
- return *this;
-
- if (is_zero())
- return -x;
-
- /* Ensure both arguments are positive. Otherwise, switch signs,
- * or replace - with +. */
- if (is_negative())
- return -(-*this + x);
-
- if (x.is_negative())
- return (*this) + (-x);
-
- /* Ensure *this is larger than x */
- if (*this < x)
- return -(x - *this);
-
- exponent_t e1 = m_exponent;
- exponent_t e2 = x.m_exponent;
-
- exponent_t bigoff = (e1 - e2) / bigit_bits();
- exponent_t off = e1 - e2 - bigoff * bigit_bits();
-
- /* FIXME: ensure we have the same number of bigits */
- if (bigoff > bigit_count())
- return *this;
-
- real ret;
- ret.m_mantissa.resize(bigit_count());
- ret.m_exponent = m_exponent;
-
- /* int64_t instead of uint64_t to preserve sign through shifts */
- exponent_t carry = 0;
- for (int i = 0; i < bigoff; ++i)
- {
- carry -= x.m_mantissa[bigit_count() - 1 - i];
- /* Emulates a signed shift */
- carry >>= bigit_bits();
- carry |= carry << bigit_bits();
- }
- if (bigoff < bigit_count())
- carry -= x.m_mantissa[bigit_count() - 1 - bigoff] & (((exponent_t)1 << off) - 1);
- carry /= (exponent_t)1 << off;
-
- for (int i = bigit_count(); i--; )
- {
- carry += m_mantissa[i];
- if (i - bigoff >= 0)
- carry -= x.m_mantissa[i - bigoff] >> off;
-
- if (off && i - bigoff > 0)
- carry -= (x.m_mantissa[i - bigoff - 1] << (bigit_bits() - off)) & 0xffffffffu;
- else if (i - bigoff == 0)
- carry -= (uint64_t)1 << (bigit_bits() - off);
-
- ret.m_mantissa[i] = (bigit_t)carry;
- carry >>= bigit_bits();
- carry |= carry << bigit_bits();
- }
-
- carry += 1;
-
- /* Renormalise if we underflowed the mantissa */
- if (carry == 0)
- {
- /* How much do we need to shift the mantissa? FIXME: this could
- * be computed above */
- off = 0;
- for (int i = 0; i < bigit_count(); ++i)
- {
- if (!ret.m_mantissa[i])
- {
- off += bigit_bits();
- continue;
- }
-
- /* “~tmp > tmp” checks that the MSB is not set */
- for (bigit_t tmp = ret.m_mantissa[i]; ~tmp > tmp; tmp <<= 1)
- off++;
- break;
- }
- if (off == total_bits())
- ret.m_mantissa.resize(0);
- else
- {
- off++; /* Shift once more to get rid of the leading 1 */
- ret.m_exponent -= off;
-
- bigoff = off / bigit_bits();
- off -= bigoff * bigit_bits();
-
- for (int i = 0; i < bigit_count(); ++i)
- {
- bigit_t tmp = 0;
- if (i + bigoff < bigit_count())
- tmp |= ret.m_mantissa[i + bigoff] << off;
- if (off && i + bigoff + 1 < bigit_count())
- tmp |= ret.m_mantissa[i + bigoff + 1] >> (bigit_bits() - off);
- ret.m_mantissa[i] = tmp;
- }
- }
- }
-
- return ret;
- }
-
- template<> real real::operator *(real const &x) const
- {
- real ret;
-
- /* The sign is easy to compute */
- ret.m_sign = is_negative() ^ x.is_negative();
-
- /* If any operand is zero, return zero. FIXME: 0 * Inf? */
- if (is_zero() || x.is_zero())
- return ret;
-
- ret.m_mantissa.resize(bigit_count());
- ret.m_exponent = m_exponent + x.m_exponent;
-
- /* Accumulate low order product; no need to store it, we just
- * want the carry value */
- uint64_t carry = 0, hicarry = 0, prev;
- for (int i = 0; i < bigit_count(); ++i)
- {
- for (int j = 0; j < i + 1; j++)
- {
- prev = carry;
- carry += (uint64_t)m_mantissa[bigit_count() - 1 - j]
- * (uint64_t)x.m_mantissa[bigit_count() - 1 + j - i];
- if (carry < prev)
- hicarry++;
- }
- carry >>= bigit_bits();
- carry |= hicarry << bigit_bits();
- hicarry >>= bigit_bits();
- }
-
- /* Multiply the other components */
- for (int i = 0; i < bigit_count(); ++i)
- {
- for (int j = i + 1; j < bigit_count(); j++)
- {
- prev = carry;
- carry += (uint64_t)m_mantissa[bigit_count() - 1 - j]
- * (uint64_t)x.m_mantissa[j - 1 - i];
- if (carry < prev)
- hicarry++;
- }
- prev = carry;
- carry += m_mantissa[bigit_count() - 1 - i];
- carry += x.m_mantissa[bigit_count() - 1 - i];
- if (carry < prev)
- hicarry++;
- ret.m_mantissa[bigit_count() - 1 - i] = carry & ~(bigit_t)0;
- carry >>= bigit_bits();
- carry |= hicarry << bigit_bits();
- hicarry >>= bigit_bits();
- }
-
- /* Renormalise in case we overflowed the mantissa */
- if (carry)
- {
- carry--;
- for (int i = 0; i < bigit_count(); ++i)
- {
- bigit_t tmp = ret.m_mantissa[i];
- ret.m_mantissa[i] = ((bigit_t)carry << (bigit_bits() - 1))
- | (tmp >> 1);
- carry = tmp & 1u;
- }
- ++ret.m_exponent;
- }
-
- return ret;
- }
-
- template<> real real::operator /(real const &x) const
- {
- return *this * inverse(x);
- }
-
- template<> real const &real::operator +=(real const &x)
- {
- real tmp = *this;
- return *this = tmp + x;
- }
-
- template<> real const &real::operator -=(real const &x)
- {
- real tmp = *this;
- return *this = tmp - x;
- }
-
- template<> real const &real::operator *=(real const &x)
- {
- real tmp = *this;
- return *this = tmp * x;
- }
-
- template<> real const &real::operator /=(real const &x)
- {
- real tmp = *this;
- return *this = tmp / x;
- }
-
- template<> bool real::operator ==(real const &x) const
- {
- /* If NaN is involved, return false */
- if (is_nan() || x.is_nan())
- return false;
-
- /* If both zero, they are equal; if either is zero, they are different */
- if (is_zero() || x.is_zero())
- return is_zero() && x.is_zero();
-
- /* FIXME: handle NaN/Inf */
- return m_exponent == x.m_exponent && m_mantissa == x.m_mantissa;
- }
-
- template<> bool real::operator !=(real const &x) const
- {
- return !(is_nan() || x.is_nan() || *this == x);
- }
-
- template<> bool real::operator <(real const &x) const
- {
- /* If NaN is involved, return false */
- if (is_nan() || x.is_nan())
- return false;
-
- /* Ensure we are positive */
- if (is_negative())
- return -*this > -x;
-
- /* If x is zero or negative, we can’t be < x */
- if (x.is_negative() || x.is_zero())
- return false;
-
- /* If we are zero, we must be < x */
- if (is_zero())
- return true;
-
- /* Compare exponents */
- if (m_exponent != x.m_exponent)
- return m_exponent < x.m_exponent;
-
- /* Compare all relevant bits */
- for (int i = 0; i < bigit_count(); ++i)
- if (m_mantissa[i] != x.m_mantissa[i])
- return m_mantissa[i] < x.m_mantissa[i];
-
- return false;
- }
-
- template<> bool real::operator <=(real const &x) const
- {
- return !(is_nan() || x.is_nan() || *this > x);
- }
-
- template<> bool real::operator >(real const &x) const
- {
- /* If NaN is involved, return false */
- if (is_nan() || x.is_nan())
- return false;
-
- /* Ensure we are positive */
- if (is_negative())
- return -*this < -x;
-
- /* If x is zero, we’re > x iff we’re non-zero since we’re positive */
- if (x.is_zero())
- return !is_zero();
-
- /* If x is strictly negative, we’re > x */
- if (x.is_negative())
- return true;
-
- /* If we are zero, we can’t be > x */
- if (is_zero())
- return false;
-
- /* Compare exponents */
- if (m_exponent != x.m_exponent)
- return m_exponent > x.m_exponent;
-
- /* Compare all relevant bits */
- for (int i = 0; i < bigit_count(); ++i)
- if (m_mantissa[i] != x.m_mantissa[i])
- return m_mantissa[i] > x.m_mantissa[i];
-
- return false;
- }
-
- template<> bool real::operator >=(real const &x) const
- {
- return !(is_nan() || x.is_nan() || *this < x);
- }
-
- template<> bool real::operator !() const
- {
- return !(bool)*this;
- }
-
- template<> real::operator bool() const
- {
- /* A real is "true" if it is non-zero AND not NaN */
- return !is_zero() && !is_nan();
- }
-
- template<> real min(real const &a, real const &b)
- {
- return (a < b) ? a : b;
- }
-
- template<> real max(real const &a, real const &b)
- {
- return (a > b) ? a : b;
- }
-
- template<> real clamp(real const &x, real const &a, real const &b)
- {
- return (x < a) ? a : (x > b) ? b : x;
- }
-
- template<> real inverse(real const &x)
- {
- real ret;
-
- /* If zero, return infinite */
- if (x.is_zero())
- return copysign(real::R_INF(), x);
-
- /* Use the system’s float inversion to approximate 1/x */
- union { float f; uint32_t x; } u = { 1.0f };
- u.x |= x.m_mantissa[0] >> 9;
- u.f = 1.0f / u.f;
-
- ret.m_mantissa.resize(x.bigit_count());
- ret.m_mantissa[0] = u.x << 9;
- ret.m_sign = x.m_sign;
- ret.m_exponent = -x.m_exponent + (u.x >> 23) - 0x7f;
-
- /* FIXME: 1+log2(bigit_count) steps of Newton-Raphson seems to be enough for
- * convergence, but this hasn’t been checked seriously. */
- for (int i = 1; i <= x.bigit_count(); i *= 2)
- ret = ret * (real::R_2() - ret * x);
-
- return ret;
- }
-
- template<> real sqrt(real const &x)
- {
- /* if zero, return x (FIXME: negative zero?) */
- if (x.is_zero())
- return x;
-
- /* if negative, return NaN */
- if (x.is_negative())
- return real::R_NAN();
-
- int tweak = x.m_exponent & 1;
-
- /* Use the system’s float inversion to approximate 1/sqrt(x). First
- * we construct a float in the [1..4[ range that has roughly the same
- * mantissa as our real. Its exponent is 0 or 1, depending on the
- * parity of x’s exponent. The final exponent is 0, -1 or -2. We use
- * the final exponent and final mantissa to pre-fill the result. */
- union { float f; uint32_t x; } u = { 1.0f };
- u.x += tweak << 23;
- u.x |= x.m_mantissa[0] >> 9;
- u.f = 1.0f / sqrtf(u.f);
-
- real ret;
- ret.m_mantissa.resize(x.bigit_count());
- ret.m_mantissa[0] = u.x << 9;
-
- ret.m_exponent = -(x.m_exponent - tweak) / 2 + (u.x >> 23) - 0x7f;
-
- /* FIXME: 1+log2(bigit_count()) steps of Newton-Raphson seems to be enough for
- * convergence, but this hasn’t been checked seriously. */
- for (int i = 1; i <= x.bigit_count(); i *= 2)
- {
- ret = ret * (real::R_3() - ret * ret * x);
- --ret.m_exponent;
- }
-
- return ret * x;
- }
-
- template<> real cbrt(real const &x)
- {
- /* if zero, return x */
- if (x.is_zero())
- return x;
-
- int tweak = x.m_exponent % 3;
- if (tweak < 0)
- tweak += 3;
-
- /* Use the system’s float inversion to approximate cbrt(x). First
- * we construct a float in the [1..8[ range that has roughly the same
- * mantissa as our real. Its exponent is 0, 1 or 2, depending on the
- * value of x. The final exponent is 0 or 1 (special case). We use
- * the final exponent and final mantissa to pre-fill the result. */
- union { float f; uint32_t x; } u = { 1.0f };
- u.x += tweak << 23;
- u.x |= x.m_mantissa[0] >> 9;
- u.f = powf(u.f, 1.f / 3);
-
- real ret;
- ret.m_mantissa.resize(x.bigit_count());
- ret.m_mantissa[0] = u.x << 9;
- ret.m_exponent = (x.m_exponent - tweak) / 3 + (u.x >> 23) - 0x7f;
- ret.m_sign = x.m_sign;
-
- /* FIXME: 1+log2(bigit_count()) steps of Newton-Raphson seems to be enough
- * for convergence, but this hasn’t been checked seriously. */
- real third = inverse(real::R_3());
- for (int i = 1; i <= x.bigit_count(); i *= 2)
- {
- ret = third * (x / (ret * ret) + (ret * 2));
- }
-
- return ret;
- }
-
- template<> real pow(real const &x, real const &y)
- {
- /* Shortcuts for degenerate cases */
- if (!y)
- return real::R_1();
- if (!x)
- return real::R_0();
-
- /* Small integer exponent: use exponentiation by squaring */
- int64_t int_y = (int64_t)y;
- if (y == (real)int_y)
- {
- real ret = real::R_1();
- real x_n = int_y > 0 ? x : inverse(x);
-
- while (int_y) /* Can be > 0 or < 0 */
- {
- if (int_y & 1)
- ret *= x_n;
- x_n *= x_n;
- int_y /= 2;
- }
-
- return ret;
- }
-
- /* If x is positive, nothing special to do. */
- if (x > real::R_0())
- return exp(y * log(x));
-
- /* XXX: manpage for pow() says “If x is a finite value less than 0,
- * and y is a finite noninteger, a domain error occurs, and a NaN is
- * returned”. We check whether y is closer to an even number or to
- * an odd number and return something reasonable. */
- real round_y = round(y);
- bool is_odd = round_y / 2 == round(round_y / 2);
- return is_odd ? exp(y * log(-x)) : -exp(y * log(-x));
- }
-
- /* A fast factorial implementation for small numbers. An optional
- * step argument allows to compute double factorials (i.e. with
- * only the odd or the even terms. */
- static real fast_fact(int x, int step = 1)
- {
- if (x < step)
- return 1;
-
- if (x == step)
- return x;
-
- unsigned int start = (x + step - 1) % step + 1;
- real ret(start);
- uint64_t multiplier = 1;
-
- for (int i = start, exponent = 0;;)
- {
- if (i >= x)
- return ldexp(ret * multiplier, exponent);
-
- i += step;
-
- /* Accumulate the power of two part in the exponent */
- unsigned int tmp = i;
- while ((tmp & 1) == 0)
- {
- tmp >>= 1;
- exponent++;
- }
-
- /* Accumulate the other factors in the multiplier */
- if (multiplier * tmp / tmp != multiplier)
- {
- ret *= multiplier;
- multiplier = 1;
- }
- multiplier *= tmp;
- }
- }
-
- template<> real gamma(real const &x)
- {
- /* We use Spouge’s formula. FIXME: precision is far from acceptable,
- * especially with large values. We need to compute this with higher
- * precision values in order to attain the desired accuracy. It might
- * also be useful to sort the ck values by decreasing absolute value
- * and do the addition in this order. */
- int a = (int)ceilf(logf(2) / logf(2 * F_PI) * x.total_bits());
-
- real ret = sqrt(real::R_PI() * 2);
- real fact_k_1 = real::R_1();
-
- for (int k = 1; k < a; k++)
- {
- real a_k = (real)(a - k);
- real ck = pow(a_k, (real)((float)k - 0.5)) * exp(a_k)
- / (fact_k_1 * (x + (real)(k - 1)));
- ret += ck;
- fact_k_1 *= (real)-k;
- }
-
- ret *= pow(x + (real)(a - 1), x - (real::R_1() / 2));
- ret *= exp(-x - (real)(a - 1));
-
- return ret;
- }
-
- template<> real fabs(real const &x)
- {
- real ret = x;
- ret.m_sign = false;
- return ret;
- }
-
- template<> real abs(real const &x)
- {
- return fabs(x);
- }
-
- template<> real fract(real const &x)
- {
- return x - floor(x);
- }
-
- template<> real degrees(real const &x)
- {
- /* FIXME: need to recompute this for different mantissa sizes */
- static real mul = real(180) * real::R_1_PI();
-
- return x * mul;
- }
-
- template<> real radians(real const &x)
- {
- /* FIXME: need to recompute this for different mantissa sizes */
- static real mul = real::R_PI() / real(180);
-
- return x * mul;
- }
-
- static real fast_log(real const &x)
- {
- /* This fast log method is tuned to work on the [1..2] range and
- * no effort whatsoever was made to improve convergence outside this
- * domain of validity. It can converge pretty fast, provided we use
- * the following variable substitutions:
- * y = sqrt(x)
- * z = (y - 1) / (y + 1)
- *
- * And the following identities:
- * ln(x) = 2 ln(y)
- * = 2 ln((1 + z) / (1 - z))
- * = 4 z (1 + z^2 / 3 + z^4 / 5 + z^6 / 7...)
- *
- * Any additional sqrt() call would halve the convergence time, but
- * would also impact the final precision. For now we stick with one
- * sqrt() call. */
- real y = sqrt(x);
- real z = (y - real::R_1()) / (y + real::R_1()), z2 = z * z, zn = z2;
- real sum = real::R_1();
-
- for (int i = 3; ; i += 2)
- {
- real newsum = sum + zn / (real)i;
- if (newsum == sum)
- break;
- sum = newsum;
- zn *= z2;
- }
-
- return z * sum * 4;
- }
-
- template<> real log(real const &x)
- {
- /* Strategy for log(x): if x = 2^E*M then log(x) = E log(2) + log(M),
- * with the property that M is in [1..2[, so fast_log() applies here. */
- if (x.is_negative() || x.is_zero())
- return real::R_NAN();
-
- real tmp(x);
- tmp.m_exponent = 0;
- return real(x.m_exponent) * real::R_LN2() + fast_log(tmp);
- }
-
- template<> real log2(real const &x)
- {
- /* Strategy for log2(x): see log(x). */
- if (x.is_negative() || x.is_zero())
- return real::R_NAN();
-
- real tmp(x);
- tmp.m_exponent = 0;
- return real(x.m_exponent) + fast_log(tmp) * real::R_LOG2E();
- }
-
- template<> real log10(real const &x)
- {
- return log(x) * real::R_LOG10E();
- }
-
- static real fast_exp_sub(real const &x, real const &y)
- {
- /* This fast exp method is tuned to work on the [-1..1] range and
- * no effort whatsoever was made to improve convergence outside this
- * domain of validity. The argument y is used for cases where we
- * don’t want the leading 1 in the Taylor series. */
- real ret = real::R_1() - y, xn = x;
- int i = 1;
-
- for (;;)
- {
- real newret = ret + xn;
- if (newret == ret)
- break;
- ret = newret * ++i;
- xn *= x;
- }
-
- return ret / fast_fact(i);
- }
-
- template<> real exp(real const &x)
- {
- /* Strategy for exp(x): the Taylor series does not converge very fast
- * with large positive or negative values.
- *
- * However, since the result is going to be in the form M*2^E, we first
- * try to predict a value for E, which is approximately:
- * E ≈ log2(exp(x)) = x / log(2)
- *
- * Let E0 be an integer close to x / log(2). We need to find a value x0
- * such that exp(x) = 2^E0 * exp(x0). We get x0 = x - E0 log(2).
- *
- * Thus the final algorithm:
- * int E0 = x / log(2)
- * real x0 = x - E0 log(2)
- * real x1 = exp(x0)
- * return x1 * 2^E0
- */
- real::exponent_t e0 = x / real::R_LN2();
- real x0 = x - (real)e0 * real::R_LN2();
- real x1 = fast_exp_sub(x0, real::R_0());
- x1.m_exponent += e0;
- return x1;
- }
-
- template<> real exp2(real const &x)
- {
- /* Strategy for exp2(x): see strategy in exp(). */
- real::exponent_t e0 = x;
- real x0 = x - (real)e0;
- real x1 = fast_exp_sub(x0 * real::R_LN2(), real::R_0());
- x1.m_exponent += e0;
- return x1;
- }
-
- template<> real erf(real const &x)
- {
- /* Strategy for erf(x):
- * - if x<0, erf(x) = -erf(-x)
- * - if x<7, erf(x) = sum((-1)^n·x^(2n+1)/((2n+1)·n!))/sqrt(π/4)
- * - if x≥7, erf(x) = 1+exp(-x²)/(x·sqrt(π))·sum((-1)^n·(2n-1)!!/(2x²)^n
- *
- * FIXME: do not compute factorials at each iteration, accumulate
- * them instead (see fast_exp_sub).
- * FIXME: For a potentially faster implementation, see “Expanding the
- * Error Function erf(z)” at:
- * http://www.mathematica-journal.com/2014/11/on-burmanns-theorem-and-its-application-to-problems-of-linear-and-nonlinear-heat-transfer-and-diffusion/#more-39602/
- */
- if (x.is_negative())
- return -erf(-x);
-
- real sum = real::R_0();
- real x2 = x * x;
-
- /* FIXME: this test is inefficient; the series converges slowly for x≥1 */
- if (x < real(7))
- {
- real xn = x, xmul = x2;
- for (int n = 0;; ++n, xn *= xmul)
- {
- real tmp = xn / (fast_fact(n) * (2 * n + 1));
- real newsum = (n & 1) ? sum - tmp : sum + tmp;
- if (newsum == sum)
- break;
- sum = newsum;
- }
- return sum * real::R_2_SQRTPI();
- }
- else
- {
- real xn = real::R_1(), xmul = inverse(x2 + x2);
- /* FIXME: this does not converge well! We need to stop at 30
- * iterations and sacrifice some accuracy. */
- for (int n = 0; n < 30; ++n, xn *= xmul)
- {
- real tmp = xn * fast_fact(n * 2 - 1, 2);
- real newsum = (n & 1) ? sum - tmp : sum + tmp;
- if (newsum == sum)
- break;
- sum = newsum;
- }
-
- return real::R_1() - exp(-x2) / (x * sqrt(real::R_PI())) * sum;
- }
- }
-
- template<> real sinh(real const &x)
- {
- /* We cannot always use (exp(x)-exp(-x))/2 because we'll lose
- * accuracy near zero. We only use this identity for |x|>0.5. If
- * |x|<=0.5, we compute exp(x)-1 and exp(-x)-1 instead. */
- bool near_zero = (fabs(x) < real::R_1() / 2);
- real x1 = near_zero ? fast_exp_sub(x, real::R_1()) : exp(x);
- real x2 = near_zero ? fast_exp_sub(-x, real::R_1()) : exp(-x);
- return (x1 - x2) / 2;
- }
-
- template<> real tanh(real const &x)
- {
- /* See sinh() for the strategy here */
- bool near_zero = (fabs(x) < real::R_1() / 2);
- real x1 = near_zero ? fast_exp_sub(x, real::R_1()) : exp(x);
- real x2 = near_zero ? fast_exp_sub(-x, real::R_1()) : exp(-x);
- real x3 = near_zero ? x1 + x2 + real::R_2() : x1 + x2;
- return (x1 - x2) / x3;
- }
-
- template<> real cosh(real const &x)
- {
- /* No need to worry about accuracy here; maybe the last bit is slightly
- * off, but that's about it. */
- return (exp(x) + exp(-x)) / 2;
- }
-
- template<> real frexp(real const &x, real::exponent_t *exp)
- {
- if (!x)
- {
- *exp = 0;
- return x;
- }
-
- /* FIXME: check that this works */
- *exp = x.m_exponent;
-
- real ret = x;
- ret.m_exponent = 0;
- return ret;
- }
-
- template<> real ldexp(real const &x, real::exponent_t exp)
- {
- real ret = x;
- if (ret) /* Only do something if non-zero */
- ret.m_exponent += exp;
- return ret;
- }
-
- template<> real modf(real const &x, real *iptr)
- {
- real absx = fabs(x);
- real tmp = floor(absx);
-
- *iptr = copysign(tmp, x);
- return copysign(absx - tmp, x);
- }
-
- template<> real nextafter(real const &x, real const &y)
- {
- /* Linux manpage: “If x equals y, the functions return y.” */
- if (x == y)
- return y;
-
- /* Ensure x is positive. */
- if (x.is_negative())
- return -nextafter(-x, -y);
-
- /* FIXME: broken for now */
- real ulp = ldexp(x, -x.total_bits());
- return x < y ? x + ulp : x - ulp;
- }
-
- template<> real copysign(real const &x, real const &y)
- {
- real ret = x;
- ret.m_sign = y.m_sign;
- return ret;
- }
-
- template<> real floor(real const &x)
- {
- /* Strategy for floor(x):
- * - if negative, return -ceil(-x)
- * - if zero or negative zero, return x
- * - if less than one, return zero
- * - otherwise, if e is the exponent, clear all bits except the
- * first e. */
- if (x < -real::R_0())
- return -ceil(-x);
- if (!x)
- return x;
- if (x < real::R_1())
- return real::R_0();
-
- real ret = x;
- real::exponent_t exponent = x.m_exponent;
-
- for (int i = 0; i < x.bigit_count(); ++i)
- {
- if (exponent <= 0)
- ret.m_mantissa[i] = 0;
- else if (exponent < real::bigit_bits())
- ret.m_mantissa[i] &= ~((1 << (real::bigit_bits() - exponent)) - 1);
-
- exponent -= real::bigit_bits();
- }
-
- return ret;
- }
-
- template<> real ceil(real const &x)
- {
- /* Strategy for ceil(x):
- * - if negative, return -floor(-x)
- * - if x == floor(x), return x
- * - otherwise, return floor(x) + 1 */
- if (x < -real::R_0())
- return -floor(-x);
- real ret = floor(x);
- if (ret < x)
- ret += real::R_1();
- return ret;
- }
-
- template<> real round(real const &x)
- {
- if (x < real::R_0())
- return -round(-x);
-
- return floor(x + (real::R_1() / 2));
- }
-
- template<> real fmod(real const &x, real const &y)
- {
- if (!y)
- return real::R_0(); /* FIXME: return NaN */
-
- if (!x)
- return x;
-
- real tmp = round(x / y);
- return x - tmp * y;
- }
-
- template<> real sin(real const &x)
- {
- bool switch_sign = x.is_negative();
-
- real absx = fmod(fabs(x), real::R_PI() * 2);
- if (absx > real::R_PI())
- {
- absx -= real::R_PI();
- switch_sign = !switch_sign;
- }
-
- if (absx > real::R_PI_2())
- absx = real::R_PI() - absx;
-
- real ret = real::R_0(), fact = real::R_1(), xn = absx, mx2 = -absx * absx;
- int i = 1;
- for (;;)
- {
- real newret = ret + xn;
- if (newret == ret)
- break;
- ret = newret * ((i + 1) * (i + 2));
- xn *= mx2;
- i += 2;
- }
- ret /= fast_fact(i);
-
- /* Propagate sign */
- ret.m_sign ^= switch_sign;
- return ret;
- }
-
- template<> real cos(real const &x)
- {
- return sin(real::R_PI_2() - x);
- }
-
- template<> real tan(real const &x)
- {
- /* Constrain input to [-π,π] */
- real y = fmod(x, real::R_PI());
-
- /* Constrain input to [-π/2,π/2] */
- if (y < -real::R_PI_2())
- y += real::R_PI();
- else if (y > real::R_PI_2())
- y -= real::R_PI();
-
- /* In [-π/4,π/4] return sin/cos */
- if (fabs(y) <= real::R_PI_4())
- return sin(y) / cos(y);
-
- /* Otherwise, return cos/sin */
- if (y > real::R_0())
- y = real::R_PI_2() - y;
- else
- y = -real::R_PI_2() - y;
-
- return cos(y) / sin(y);
- }
-
- static inline real asinacos(real const &x, int is_asin)
- {
- /* Strategy for asin(): in [-0.5..0.5], use a Taylor series around
- * zero. In [0.5..1], use asin(x) = π/2 - 2*asin(sqrt((1-x)/2)), and
- * in [-1..-0.5] just revert the sign.
- * Strategy for acos(): use acos(x) = π/2 - asin(x) and try not to
- * lose the precision around x=1. */
- real absx = fabs(x);
- int around_zero = (absx < (real::R_1() / 2));
-
- if (!around_zero)
- absx = sqrt((real::R_1() - absx) / 2);
-
- real ret = absx, xn = absx, x2 = absx * absx, fact1 = 2, fact2 = 1;
- for (int i = 1; ; ++i)
- {
- xn *= x2;
- real mul = (real)(2 * i + 1);
- real newret = ret + ldexp(fact1 * xn / (mul * fact2), -2 * i);
- if (newret == ret)
- break;
- ret = newret;
- fact1 *= (real)((2 * i + 1) * (2 * i + 2));
- fact2 *= (real)((i + 1) * (i + 1));
- }
-
- if (x.is_negative())
- ret = -ret;
-
- if (around_zero)
- ret = is_asin ? ret : real::R_PI_2() - ret;
- else
- {
- real adjust = x.is_negative() ? real::R_PI() : real::R_0();
- if (is_asin)
- ret = real::R_PI_2() - adjust - ret * 2;
- else
- ret = adjust + ret * 2;
- }
-
- return ret;
- }
-
- template<> real asin(real const &x)
- {
- return asinacos(x, 1);
- }
-
- template<> real acos(real const &x)
- {
- return asinacos(x, 0);
- }
-
- template<> real atan(real const &x)
- {
- /* Computing atan(x): we choose a different Taylor series depending on
- * the value of x to help with convergence.
- *
- * If |x| < 0.5 we evaluate atan(y) near 0:
- * atan(y) = y - y^3/3 + y^5/5 - y^7/7 + y^9/9 ...
- *
- * If 0.5 <= |x| < 1.5 we evaluate atan(1+y) near 0:
- * atan(1+y) = π/4 + y/(1*2^1) - y^2/(2*2^1) + y^3/(3*2^2)
- * - y^5/(5*2^3) + y^6/(6*2^3) - y^7/(7*2^4)
- * + y^9/(9*2^5) - y^10/(10*2^5) + y^11/(11*2^6) ...
- *
- * If 1.5 <= |x| < 2 we evaluate atan(sqrt(3)+2y) near 0:
- * atan(sqrt(3)+2y) = π/3 + 1/2 y - sqrt(3)/2 y^2/2
- * + y^3/3 - sqrt(3)/2 y^4/4 + 1/2 y^5/5
- * - 1/2 y^7/7 + sqrt(3)/2 y^8/8
- * - y^9/9 + sqrt(3)/2 y^10/10 - 1/2 y^11/11
- * + 1/2 y^13/13 - sqrt(3)/2 y^14/14
- * + y^15/15 - sqrt(3)/2 y^16/16 + 1/2 y^17/17 ...
- *
- * If |x| >= 2 we evaluate atan(y) near +∞:
- * atan(y) = π/2 - y^-1 + y^-3/3 - y^-5/5 + y^-7/7 - y^-9/9 ...
- */
- real absx = fabs(x);
-
- if (absx < (real::R_1() / 2))
- {
- real ret = x, xn = x, mx2 = -x * x;
- for (int i = 3; ; i += 2)
- {
- xn *= mx2;
- real newret = ret + xn / (real)i;
- if (newret == ret)
- break;
- ret = newret;
- }
- return ret;
- }
-
- real ret = 0;
-
- if (absx < (real::R_3() / 2))
- {
- real y = real::R_1() - absx;
- real yn = y, my2 = -y * y;
- for (int i = 0; ; i += 2)
- {
- real newret = ret + ldexp(yn / (real)(2 * i + 1), -i - 1);
- yn *= y;
- newret += ldexp(yn / (real)(2 * i + 2), -i - 1);
- yn *= y;
- newret += ldexp(yn / (real)(2 * i + 3), -i - 2);
- if (newret == ret)
- break;
- ret = newret;
- yn *= my2;
- }
- ret = real::R_PI_4() - ret;
- }
- else if (absx < real::R_2())
- {
- real y = (absx - real::R_SQRT3()) / 2;
- real yn = y, my2 = -y * y;
- for (int i = 1; ; i += 6)
- {
- real newret = ret + ((yn / (real)i) / 2);
- yn *= y;
- newret -= (real::R_SQRT3() / 2) * yn / (real)(i + 1);
- yn *= y;
- newret += yn / (real)(i + 2);
- yn *= y;
- newret -= (real::R_SQRT3() / 2) * yn / (real)(i + 3);
- yn *= y;
- newret += (yn / (real)(i + 4)) / 2;
- if (newret == ret)
- break;
- ret = newret;
- yn *= my2;
- }
- ret = real::R_PI_3() + ret;
- }
- else
- {
- real y = inverse(absx);
- real yn = y, my2 = -y * y;
- ret = y;
- for (int i = 3; ; i += 2)
- {
- yn *= my2;
- real newret = ret + yn / (real)i;
- if (newret == ret)
- break;
- ret = newret;
- }
- ret = real::R_PI_2() - ret;
- }
-
- /* Propagate sign */
- ret.m_sign = x.m_sign;
- return ret;
- }
-
- template<> real atan2(real const &y, real const &x)
- {
- if (!y)
- {
- if (!x.is_negative())
- return y;
- return y.is_negative() ? -real::R_PI() : real::R_PI();
- }
-
- if (!x)
- {
- return y.is_negative() ? -real::R_PI() : real::R_PI();
- }
-
- /* FIXME: handle the Inf and NaN cases */
- real z = y / x;
- real ret = atan(z);
- if (x < real::R_0())
- ret += (y > real::R_0()) ? real::R_PI() : -real::R_PI();
- return ret;
- }
-
- /* Franke’s function, used as a test for interpolation methods */
- template<> real franke(real const &x, real const &y)
- {
- /* Compute 9x and 9y */
- real nx = x + x; nx += nx; nx += nx + x;
- real ny = y + y; ny += ny; ny += ny + y;
-
- /* Temporary variables for the formula */
- real a = nx - real::R_2();
- real b = ny - real::R_2();
- real c = nx + real::R_1();
- real d = ny + real::R_1();
- real e = nx - real(7);
- real f = ny - real::R_3();
- real g = nx - real(4);
- real h = ny - real(7);
-
- return exp(-(a * a + b * b) * real(0.25)) * real(0.75)
- + exp(-(c * c / real(49) + d * d / real::R_10())) * real(0.75)
- + exp(-(e * e + f * f) * real(0.25)) * real(0.5)
- - exp(-(g * g + h * h)) / real(5);
- }
-
- /* The Peaks example function from Matlab */
- template<> real peaks(real const &x, real const &y)
- {
- real x2 = x * x;
- real y2 = y * y;
- /* 3 * (1-x)^2 * exp(-x^2 - (y+1)^2) */
- real ret = real::R_3()
- * (x2 - x - x + real::R_1())
- * exp(- x2 - y2 - y - y - real::R_1());
- /* -10 * (x/5 - x^3 - y^5) * exp(-x^2 - y^2) */
- ret -= (x + x - real::R_10() * (x2 * x + y2 * y2 * y)) * exp(-x2 - y2);
- /* -1/3 * exp(-(x+1)^2 - y^2) */
- ret -= exp(-x2 - x - x - real::R_1() - y2) / real::R_3();
- return ret;
- }
-
- template<>
- std::ostream& operator <<(std::ostream &s, real const &x)
- {
- bool hex = (s.flags() & std::ios_base::basefield) == std::ios_base::hex;
- s << (hex ? x.xstr() : x.str((int)s.precision()));
- return s;
- }
-
- template<> std::string real::str(int ndigits) const
- {
- std::stringstream ss;
- real x = *this;
-
- if (x.is_negative())
- {
- ss << '-';
- x = -x;
- }
-
- if (!x)
- {
- ss << '0';
- return ss.str();
- }
-
- // Normalise x so that mantissa is in [1..9.999]
- // FIXME: better use int64_t when the cast is implemented
- // FIXME: does not work with R_MAX and probably R_MIN
- int exponent = ceil(log10(x));
- x *= pow(R_10(), -(real)exponent);
-
- if (ndigits < 1)
- ndigits = 1;
-
- // Add a bias to simulate some naive rounding
- x += real(4.99f) * pow(R_10(), -(real)(ndigits + 1));
-
- if (x < R_1())
- {
- x *= R_10();
- exponent--;
- }
-
- // Print digits
- for (int i = 0; i < ndigits; ++i)
- {
- int digit = (int)floor(x);
- ss << (char)('0' + digit);
- if (i == 0)
- ss << '.';
- x -= real(digit);
- x *= R_10();
- }
-
- // Remove trailing zeroes
- std::string ret = ss.str();
- ss.str("");
- size_t end = ret.find_last_not_of('0');
- if (end != std::string::npos)
- ss << ret.substr(0, end + 1);
-
- // Print exponent information
- if (exponent)
- ss << 'e' << (exponent >= 0 ? '+' : '-') << lol::abs(exponent);
-
- return ss.str();
- }
-
- template<> std::string real::xstr() const
- {
- std::stringstream ss;
- if (is_negative())
- ss << '-';
- ss << "0x1." << std::hex << std::setfill('0');
- for (int i = 0; i < bigit_count(); ++i)
- ss << std::setw(8) << m_mantissa[i];
- ss << std::dec;
-
- // Remove trailing zeroes
- std::string ret = ss.str();
- ss.str("");
- size_t end = ret.find_last_not_of('0');
- if (end != std::string::npos)
- ss << ret.substr(0, end + 1);
-
- ss << 'p' << m_exponent;
-
- return ss.str();
- }
-
- static real load_min()
- {
- real ret = 1;
- return ldexp(ret, std::numeric_limits<real::exponent_t>::min());
- }
-
- static real load_max()
- {
- /* FIXME: the last bits of the mantissa are not properly handled in this
- * code! So we fallback to a slow but exact method. */
- #if 0
- real ret = 1;
- ret = ldexp(ret, real::TOTAL_BITS - 1) - ret;
- return ldexp(ret, real::EXPONENT_BIAS + 2 - real::TOTAL_BITS);
- #endif
- /* Generates 0x1.ffff..ffffp18446744073709551615 */
- char str[160];
- std::sprintf(str, "0x1.%llx%llx%llx%llx%llx%llx%llx%llxp%lld",
- -1ll, -1ll, -1ll, -1ll, -1ll, -1ll, -1ll, -1ll,
- (long long int)std::numeric_limits<int64_t>::max());
- return real(str);
- }
-
- static real load_pi()
- {
- /* Approximate π using Machin’s formula: 16*atan(1/5)-4*atan(1/239) */
- real ret = 0, x0 = 5, x1 = 239;
- real const m0 = -x0 * x0, m1 = -x1 * x1, r16 = 16, r4 = 4;
-
- for (int i = 1; ; i += 2)
- {
- real newret = ret + r16 / (x0 * (real)i) - r4 / (x1 * (real)i);
- if (newret == ret)
- break;
- ret = newret;
- x0 *= m0;
- x1 *= m1;
- }
-
- return ret;
- }
-
- } /* namespace lol */
|