You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

1699 lines
45 KiB

  1. //
  2. // Lol Engine
  3. //
  4. // Copyright © 2010—2019 Sam Hocevar <sam@hocevar.net>
  5. //
  6. // Lol Engine is free software. It comes without any warranty, to
  7. // the extent permitted by applicable law. You can redistribute it
  8. // and/or modify it under the terms of the Do What the Fuck You Want
  9. // to Public License, Version 2, as published by the WTFPL Task Force.
  10. // See http://www.wtfpl.net/ for more details.
  11. //
  12. #include <lol/engine-internal.h>
  13. #include <new>
  14. #include <string>
  15. #include <sstream>
  16. #include <iomanip>
  17. #include <cstring>
  18. #include <cstdlib>
  19. namespace lol
  20. {
  21. /*
  22. * First handle explicit specialisation of our templates.
  23. */
  24. template<> int real::DEFAULT_BIGIT_COUNT = 16;
  25. /*
  26. * Initialisation order is not important because everything is
  27. * done on demand, but here is the dependency list anyway:
  28. * - fast_log() requires R_1
  29. * - log() requires R_LN2
  30. * - inverse() require R_2
  31. * - exp() requires R_0, R_1, R_LN2
  32. * - sqrt() requires R_3
  33. */
  34. static real fast_log(real const &x);
  35. static real load_min();
  36. static real load_max();
  37. static real load_pi();
  38. /* These getters do not need caching, their return values are small */
  39. template<> real const real::R_0() { return real(); }
  40. template<> real const real::R_INF() { real ret; ret.m_inf = true; return ret; }
  41. template<> real const real::R_NAN() { real ret; ret.m_nan = true; return ret; }
  42. #define LOL_CONSTANT_GETTER(name, value) \
  43. template<> real const& real::name() \
  44. { \
  45. static real ret; \
  46. static int prev_bigit_count = -1; \
  47. /* If the default bigit count has changed, we must recompute
  48. * the value with the desired precision. */ \
  49. if (prev_bigit_count != DEFAULT_BIGIT_COUNT) \
  50. { \
  51. ret = (value); \
  52. prev_bigit_count = DEFAULT_BIGIT_COUNT; \
  53. } \
  54. return ret; \
  55. }
  56. LOL_CONSTANT_GETTER(R_1, real(1.0));
  57. LOL_CONSTANT_GETTER(R_2, real(2.0));
  58. LOL_CONSTANT_GETTER(R_3, real(3.0));
  59. LOL_CONSTANT_GETTER(R_10, real(10.0));
  60. LOL_CONSTANT_GETTER(R_MIN, load_min());
  61. LOL_CONSTANT_GETTER(R_MAX, load_max());
  62. LOL_CONSTANT_GETTER(R_LN2, fast_log(R_2()));
  63. LOL_CONSTANT_GETTER(R_LN10, log(R_10()));
  64. LOL_CONSTANT_GETTER(R_LOG2E, inverse(R_LN2()));
  65. LOL_CONSTANT_GETTER(R_LOG10E, inverse(R_LN10()));
  66. LOL_CONSTANT_GETTER(R_E, exp(R_1()));
  67. LOL_CONSTANT_GETTER(R_PI, load_pi());
  68. LOL_CONSTANT_GETTER(R_PI_2, R_PI() / 2);
  69. LOL_CONSTANT_GETTER(R_PI_3, R_PI() / R_3());
  70. LOL_CONSTANT_GETTER(R_PI_4, R_PI() / 4);
  71. LOL_CONSTANT_GETTER(R_TAU, R_PI() + R_PI());
  72. LOL_CONSTANT_GETTER(R_1_PI, inverse(R_PI()));
  73. LOL_CONSTANT_GETTER(R_2_PI, R_1_PI() * 2);
  74. LOL_CONSTANT_GETTER(R_2_SQRTPI, inverse(sqrt(R_PI())) * 2);
  75. LOL_CONSTANT_GETTER(R_SQRT2, sqrt(R_2()));
  76. LOL_CONSTANT_GETTER(R_SQRT3, sqrt(R_3()));
  77. LOL_CONSTANT_GETTER(R_SQRT1_2, R_SQRT2() / 2);
  78. #undef LOL_CONSTANT_GETTER
  79. /*
  80. * Now carry on with the rest of the Real class.
  81. */
  82. template<> real::Real(int32_t i) { new(this) real((double)i); }
  83. template<> real::Real(uint32_t i) { new(this) real((double)i); }
  84. template<> real::Real(float f) { new(this) real((double)f); }
  85. template<> real::Real(int64_t i)
  86. {
  87. new(this) real((uint64_t)lol::abs(i));
  88. m_sign = i < 0;
  89. }
  90. template<> real::Real(uint64_t i)
  91. {
  92. new(this) real();
  93. if (i)
  94. {
  95. /* Only works with 32-bit bigits for now */
  96. static_assert(sizeof(bigit_t) == 4, "bigit_t must be 32-bit");
  97. int delta = 1;
  98. while ((i >> 63) == 0)
  99. {
  100. i <<= 1;
  101. ++delta;
  102. }
  103. i <<= 1; /* Remove implicit one */
  104. m_exponent = 64 - delta;
  105. m_mantissa.resize(DEFAULT_BIGIT_COUNT);
  106. m_mantissa[0] = (bigit_t)(i >> 32);
  107. if (bigit_count() > 1)
  108. m_mantissa[1] = (bigit_t)i;
  109. }
  110. }
  111. template<> real::Real(double d)
  112. {
  113. union { double d; uint64_t x; } u = { d };
  114. m_sign = bool(u.x >> 63);
  115. exponent_t exponent = (u.x << 1) >> 53;
  116. switch (exponent)
  117. {
  118. case 0x00: /* +0 / -0 */
  119. break;
  120. case 0x7ff: /* Inf/NaN (FIXME: handle NaN!) */
  121. m_inf = true;
  122. break;
  123. default:
  124. /* Only works with 32-bit bigits for now */
  125. static_assert(sizeof(bigit_t) == 4, "bigit_t must be 32-bit");
  126. m_exponent = exponent - ((1 << 10) - 1);
  127. m_mantissa.resize(DEFAULT_BIGIT_COUNT);
  128. m_mantissa[0] = (bigit_t)(u.x >> 20);
  129. if (bigit_count() > 1)
  130. m_mantissa[1] = (bigit_t)(u.x << 12);
  131. break;
  132. }
  133. }
  134. template<> real::Real(long double f)
  135. {
  136. /* We don’t know the long double layout, so we get rid of the
  137. * exponent, then load it into a real in two steps. */
  138. int exponent;
  139. f = frexpl(f, &exponent);
  140. new(this) real(double(f));
  141. *this += double(f - (long double)*this);
  142. m_exponent += exponent;
  143. }
  144. template<> real::operator float() const { return (float)(double)*this; }
  145. template<> real::operator int32_t() const { return (int32_t)(double)floor(*this); }
  146. template<> real::operator uint32_t() const { return (uint32_t)(double)floor(*this); }
  147. template<> real::operator uint64_t() const
  148. {
  149. uint32_t msb = (uint32_t)ldexp(*this, -32);
  150. uint64_t ret = ((uint64_t)msb << 32)
  151. | (uint32_t)(*this - ldexp((real)msb, 32));
  152. return ret;
  153. }
  154. template<> real::operator int64_t() const
  155. {
  156. /* If number is positive, convert it to uint64_t first. If it is
  157. * negative, switch its sign first. */
  158. return is_negative() ? -(int64_t)-*this : (int64_t)(uint64_t)*this;
  159. }
  160. template<> real::operator double() const
  161. {
  162. union { double d; uint64_t x; } u;
  163. /* Get sign */
  164. u.x = (is_negative() ? 1 : 0) << 11;
  165. /* Compute new exponent (FIXME: handle Inf/NaN) */
  166. int64_t e = m_exponent + ((1 << 10) - 1);
  167. if (is_zero())
  168. u.x <<= 52;
  169. else if (e < 0) /* if exponent underflows, set to zero */
  170. u.x <<= 52;
  171. else if (e >= 0x7ff)
  172. {
  173. u.x |= 0x7ff;
  174. u.x <<= 52;
  175. }
  176. else
  177. {
  178. u.x |= e;
  179. /* Store mantissa if necessary */
  180. u.x <<= 32;
  181. if (bigit_count() > 0)
  182. u.x |= m_mantissa[0];
  183. u.x <<= 20;
  184. if (bigit_count() > 1)
  185. {
  186. u.x |= m_mantissa[1] >> 12;
  187. /* Rounding */
  188. u.x += (m_mantissa[1] >> 11) & 1;
  189. }
  190. }
  191. return u.d;
  192. }
  193. template<> real::operator long double() const
  194. {
  195. double hi = double(*this);
  196. double lo = double(*this - hi);
  197. return (long double)(hi) + (long double)(lo);
  198. }
  199. /*
  200. * Create a real number from an ASCII representation
  201. */
  202. template<> real::Real(char const *str)
  203. {
  204. real ret = 0;
  205. exponent_t exponent = 0;
  206. bool hex = false, comma = false, nonzero = false, negative = false, finished = false;
  207. for (char const *p = str; *p && !finished; p++)
  208. {
  209. switch (*p)
  210. {
  211. case '-':
  212. case '+':
  213. if (p != str)
  214. break;
  215. negative = (*p == '-');
  216. break;
  217. case '.':
  218. if (comma)
  219. finished = true;
  220. comma = true;
  221. break;
  222. case 'x':
  223. case 'X':
  224. /* This character is only valid for 0x... and 0X... numbers */
  225. if (p != str + 1 || str[0] != '0')
  226. finished = true;
  227. hex = true;
  228. break;
  229. case 'p':
  230. case 'P':
  231. if (hex)
  232. exponent += atoi(p + 1);
  233. finished = true;
  234. break;
  235. case 'e':
  236. case 'E':
  237. if (!hex)
  238. {
  239. exponent += atoi(p + 1);
  240. finished = true;
  241. break;
  242. }
  243. LOL_ATTR_FALLTHROUGH
  244. case 'a': case 'b': case 'c': case 'd': case 'f':
  245. case 'A': case 'B': case 'C': case 'D': case 'F':
  246. case '0': case '1': case '2': case '3': case '4':
  247. case '5': case '6': case '7': case '8': case '9':
  248. if (nonzero)
  249. {
  250. /* Multiply ret by 10 or 16 depending the base. */
  251. if (!hex)
  252. {
  253. real x = ret + ret;
  254. ret = x + x + ret;
  255. }
  256. ret.m_exponent += hex ? 4 : 1;
  257. }
  258. if (*p != '0')
  259. {
  260. ret += (*p >= 'a' && *p <= 'f') ? (int)(*p - 'a' + 10)
  261. : (*p >= 'A' && *p <= 'F') ? (int)(*p - 'A' + 10)
  262. : (int)(*p - '0');
  263. nonzero = true;
  264. }
  265. if (comma)
  266. exponent -= hex ? 4 : 1;
  267. break;
  268. default:
  269. finished = true;
  270. break;
  271. }
  272. }
  273. if (hex)
  274. ret.m_exponent += exponent;
  275. else if (exponent)
  276. ret *= pow(R_10(), (real)exponent);
  277. if (negative)
  278. ret = -ret;
  279. *this = ret;
  280. }
  281. template<> real real::operator +() const
  282. {
  283. return *this;
  284. }
  285. template<> real real::operator -() const
  286. {
  287. real ret = *this;
  288. ret.m_sign ^= true;
  289. return ret;
  290. }
  291. template<> real real::operator +(real const &x) const
  292. {
  293. if (x.is_zero())
  294. return *this;
  295. if (is_zero())
  296. return x;
  297. /* Ensure both arguments are positive. Otherwise, switch signs,
  298. * or replace + with -. */
  299. if (is_negative())
  300. return -(-*this + -x);
  301. if (x.is_negative())
  302. return *this - (-x);
  303. /* Ensure *this has the larger exponent (no need for the mantissa to
  304. * be larger, as in subtraction). Otherwise, switch. */
  305. if (m_exponent < x.m_exponent)
  306. return x + *this;
  307. int64_t e1 = m_exponent;
  308. int64_t e2 = x.m_exponent;
  309. int64_t bigoff = (e1 - e2) / bigit_bits();
  310. int64_t off = e1 - e2 - bigoff * bigit_bits();
  311. /* FIXME: ensure we have the same number of bigits */
  312. if (bigoff > bigit_count())
  313. return *this;
  314. real ret;
  315. ret.m_mantissa.resize(bigit_count());
  316. ret.m_exponent = m_exponent;
  317. uint64_t carry = 0;
  318. for (int i = bigit_count(); i--; )
  319. {
  320. carry += m_mantissa[i];
  321. if (i - bigoff >= 0)
  322. carry += x.m_mantissa[i - bigoff] >> off;
  323. if (off && i - bigoff > 0)
  324. carry += (x.m_mantissa[i - bigoff - 1] << (bigit_bits() - off)) & 0xffffffffu;
  325. else if (i - bigoff == 0)
  326. carry += (uint64_t)1 << (bigit_bits() - off);
  327. ret.m_mantissa[i] = (uint32_t)carry;
  328. carry >>= bigit_bits();
  329. }
  330. /* Renormalise in case we overflowed the mantissa */
  331. if (carry)
  332. {
  333. carry--;
  334. for (int i = 0; i < bigit_count(); ++i)
  335. {
  336. uint32_t tmp = ret.m_mantissa[i];
  337. ret.m_mantissa[i] = ((uint32_t)carry << (bigit_bits() - 1))
  338. | (tmp >> 1);
  339. carry = tmp & 1u;
  340. }
  341. ret.m_exponent++;
  342. }
  343. return ret;
  344. }
  345. template<> real real::operator -(real const &x) const
  346. {
  347. if (x.is_zero())
  348. return *this;
  349. if (is_zero())
  350. return -x;
  351. /* Ensure both arguments are positive. Otherwise, switch signs,
  352. * or replace - with +. */
  353. if (is_negative())
  354. return -(-*this + x);
  355. if (x.is_negative())
  356. return (*this) + (-x);
  357. /* Ensure *this is larger than x */
  358. if (*this < x)
  359. return -(x - *this);
  360. exponent_t e1 = m_exponent;
  361. exponent_t e2 = x.m_exponent;
  362. exponent_t bigoff = (e1 - e2) / bigit_bits();
  363. exponent_t off = e1 - e2 - bigoff * bigit_bits();
  364. /* FIXME: ensure we have the same number of bigits */
  365. if (bigoff > bigit_count())
  366. return *this;
  367. real ret;
  368. ret.m_mantissa.resize(bigit_count());
  369. ret.m_exponent = m_exponent;
  370. /* int64_t instead of uint64_t to preserve sign through shifts */
  371. exponent_t carry = 0;
  372. for (int i = 0; i < bigoff; ++i)
  373. {
  374. carry -= x.m_mantissa[bigit_count() - 1 - i];
  375. /* Emulates a signed shift */
  376. carry >>= bigit_bits();
  377. carry |= carry << bigit_bits();
  378. }
  379. if (bigoff < bigit_count())
  380. carry -= x.m_mantissa[bigit_count() - 1 - bigoff] & (((exponent_t)1 << off) - 1);
  381. carry /= (exponent_t)1 << off;
  382. for (int i = bigit_count(); i--; )
  383. {
  384. carry += m_mantissa[i];
  385. if (i - bigoff >= 0)
  386. carry -= x.m_mantissa[i - bigoff] >> off;
  387. if (off && i - bigoff > 0)
  388. carry -= (x.m_mantissa[i - bigoff - 1] << (bigit_bits() - off)) & 0xffffffffu;
  389. else if (i - bigoff == 0)
  390. carry -= (uint64_t)1 << (bigit_bits() - off);
  391. ret.m_mantissa[i] = (bigit_t)carry;
  392. carry >>= bigit_bits();
  393. carry |= carry << bigit_bits();
  394. }
  395. carry += 1;
  396. /* Renormalise if we underflowed the mantissa */
  397. if (carry == 0)
  398. {
  399. /* How much do we need to shift the mantissa? FIXME: this could
  400. * be computed above */
  401. off = 0;
  402. for (int i = 0; i < bigit_count(); ++i)
  403. {
  404. if (!ret.m_mantissa[i])
  405. {
  406. off += bigit_bits();
  407. continue;
  408. }
  409. /* “~tmp > tmp” checks that the MSB is not set */
  410. for (bigit_t tmp = ret.m_mantissa[i]; ~tmp > tmp; tmp <<= 1)
  411. off++;
  412. break;
  413. }
  414. if (off == total_bits())
  415. ret.m_mantissa.resize(0);
  416. else
  417. {
  418. off++; /* Shift once more to get rid of the leading 1 */
  419. ret.m_exponent -= off;
  420. bigoff = off / bigit_bits();
  421. off -= bigoff * bigit_bits();
  422. for (int i = 0; i < bigit_count(); ++i)
  423. {
  424. bigit_t tmp = 0;
  425. if (i + bigoff < bigit_count())
  426. tmp |= ret.m_mantissa[i + bigoff] << off;
  427. if (off && i + bigoff + 1 < bigit_count())
  428. tmp |= ret.m_mantissa[i + bigoff + 1] >> (bigit_bits() - off);
  429. ret.m_mantissa[i] = tmp;
  430. }
  431. }
  432. }
  433. return ret;
  434. }
  435. template<> real real::operator *(real const &x) const
  436. {
  437. real ret;
  438. /* The sign is easy to compute */
  439. ret.m_sign = is_negative() ^ x.is_negative();
  440. /* If any operand is zero, return zero. FIXME: 0 * Inf? */
  441. if (is_zero() || x.is_zero())
  442. return ret;
  443. ret.m_mantissa.resize(bigit_count());
  444. ret.m_exponent = m_exponent + x.m_exponent;
  445. /* Accumulate low order product; no need to store it, we just
  446. * want the carry value */
  447. uint64_t carry = 0, hicarry = 0, prev;
  448. for (int i = 0; i < bigit_count(); ++i)
  449. {
  450. for (int j = 0; j < i + 1; j++)
  451. {
  452. prev = carry;
  453. carry += (uint64_t)m_mantissa[bigit_count() - 1 - j]
  454. * (uint64_t)x.m_mantissa[bigit_count() - 1 + j - i];
  455. if (carry < prev)
  456. hicarry++;
  457. }
  458. carry >>= bigit_bits();
  459. carry |= hicarry << bigit_bits();
  460. hicarry >>= bigit_bits();
  461. }
  462. /* Multiply the other components */
  463. for (int i = 0; i < bigit_count(); ++i)
  464. {
  465. for (int j = i + 1; j < bigit_count(); j++)
  466. {
  467. prev = carry;
  468. carry += (uint64_t)m_mantissa[bigit_count() - 1 - j]
  469. * (uint64_t)x.m_mantissa[j - 1 - i];
  470. if (carry < prev)
  471. hicarry++;
  472. }
  473. prev = carry;
  474. carry += m_mantissa[bigit_count() - 1 - i];
  475. carry += x.m_mantissa[bigit_count() - 1 - i];
  476. if (carry < prev)
  477. hicarry++;
  478. ret.m_mantissa[bigit_count() - 1 - i] = carry & ~(bigit_t)0;
  479. carry >>= bigit_bits();
  480. carry |= hicarry << bigit_bits();
  481. hicarry >>= bigit_bits();
  482. }
  483. /* Renormalise in case we overflowed the mantissa */
  484. if (carry)
  485. {
  486. carry--;
  487. for (int i = 0; i < bigit_count(); ++i)
  488. {
  489. bigit_t tmp = ret.m_mantissa[i];
  490. ret.m_mantissa[i] = ((bigit_t)carry << (bigit_bits() - 1))
  491. | (tmp >> 1);
  492. carry = tmp & 1u;
  493. }
  494. ++ret.m_exponent;
  495. }
  496. return ret;
  497. }
  498. template<> real real::operator /(real const &x) const
  499. {
  500. return *this * inverse(x);
  501. }
  502. template<> real const &real::operator +=(real const &x)
  503. {
  504. real tmp = *this;
  505. return *this = tmp + x;
  506. }
  507. template<> real const &real::operator -=(real const &x)
  508. {
  509. real tmp = *this;
  510. return *this = tmp - x;
  511. }
  512. template<> real const &real::operator *=(real const &x)
  513. {
  514. real tmp = *this;
  515. return *this = tmp * x;
  516. }
  517. template<> real const &real::operator /=(real const &x)
  518. {
  519. real tmp = *this;
  520. return *this = tmp / x;
  521. }
  522. template<> bool real::operator ==(real const &x) const
  523. {
  524. /* If NaN is involved, return false */
  525. if (is_nan() || x.is_nan())
  526. return false;
  527. /* If both zero, they are equal; if either is zero, they are different */
  528. if (is_zero() || x.is_zero())
  529. return is_zero() && x.is_zero();
  530. /* FIXME: handle NaN/Inf */
  531. return m_exponent == x.m_exponent && m_mantissa == x.m_mantissa;
  532. }
  533. template<> bool real::operator !=(real const &x) const
  534. {
  535. return !(is_nan() || x.is_nan() || *this == x);
  536. }
  537. template<> bool real::operator <(real const &x) const
  538. {
  539. /* If NaN is involved, return false */
  540. if (is_nan() || x.is_nan())
  541. return false;
  542. /* Ensure we are positive */
  543. if (is_negative())
  544. return -*this > -x;
  545. /* If x is zero or negative, we can’t be < x */
  546. if (x.is_negative() || x.is_zero())
  547. return false;
  548. /* If we are zero, we must be < x */
  549. if (is_zero())
  550. return true;
  551. /* Compare exponents */
  552. if (m_exponent != x.m_exponent)
  553. return m_exponent < x.m_exponent;
  554. /* Compare all relevant bits */
  555. for (int i = 0; i < bigit_count(); ++i)
  556. if (m_mantissa[i] != x.m_mantissa[i])
  557. return m_mantissa[i] < x.m_mantissa[i];
  558. return false;
  559. }
  560. template<> bool real::operator <=(real const &x) const
  561. {
  562. return !(is_nan() || x.is_nan() || *this > x);
  563. }
  564. template<> bool real::operator >(real const &x) const
  565. {
  566. /* If NaN is involved, return false */
  567. if (is_nan() || x.is_nan())
  568. return false;
  569. /* Ensure we are positive */
  570. if (is_negative())
  571. return -*this < -x;
  572. /* If x is zero, we’re > x iff we’re non-zero since we’re positive */
  573. if (x.is_zero())
  574. return !is_zero();
  575. /* If x is strictly negative, we’re > x */
  576. if (x.is_negative())
  577. return true;
  578. /* If we are zero, we can’t be > x */
  579. if (is_zero())
  580. return false;
  581. /* Compare exponents */
  582. if (m_exponent != x.m_exponent)
  583. return m_exponent > x.m_exponent;
  584. /* Compare all relevant bits */
  585. for (int i = 0; i < bigit_count(); ++i)
  586. if (m_mantissa[i] != x.m_mantissa[i])
  587. return m_mantissa[i] > x.m_mantissa[i];
  588. return false;
  589. }
  590. template<> bool real::operator >=(real const &x) const
  591. {
  592. return !(is_nan() || x.is_nan() || *this < x);
  593. }
  594. template<> bool real::operator !() const
  595. {
  596. return !(bool)*this;
  597. }
  598. template<> real::operator bool() const
  599. {
  600. /* A real is "true" if it is non-zero AND not NaN */
  601. return !is_zero() && !is_nan();
  602. }
  603. template<> real min(real const &a, real const &b)
  604. {
  605. return (a < b) ? a : b;
  606. }
  607. template<> real max(real const &a, real const &b)
  608. {
  609. return (a > b) ? a : b;
  610. }
  611. template<> real clamp(real const &x, real const &a, real const &b)
  612. {
  613. return (x < a) ? a : (x > b) ? b : x;
  614. }
  615. template<> real inverse(real const &x)
  616. {
  617. real ret;
  618. /* If zero, return infinite */
  619. if (x.is_zero())
  620. return copysign(real::R_INF(), x);
  621. /* Use the system’s float inversion to approximate 1/x */
  622. union { float f; uint32_t x; } u = { 1.0f };
  623. u.x |= x.m_mantissa[0] >> 9;
  624. u.f = 1.0f / u.f;
  625. ret.m_mantissa.resize(x.bigit_count());
  626. ret.m_mantissa[0] = u.x << 9;
  627. ret.m_sign = x.m_sign;
  628. ret.m_exponent = -x.m_exponent + (u.x >> 23) - 0x7f;
  629. /* FIXME: 1+log2(bigit_count) steps of Newton-Raphson seems to be enough for
  630. * convergence, but this hasn’t been checked seriously. */
  631. for (int i = 1; i <= x.bigit_count(); i *= 2)
  632. ret = ret * (real::R_2() - ret * x);
  633. return ret;
  634. }
  635. template<> real sqrt(real const &x)
  636. {
  637. /* if zero, return x (FIXME: negative zero?) */
  638. if (x.is_zero())
  639. return x;
  640. /* if negative, return NaN */
  641. if (x.is_negative())
  642. return real::R_NAN();
  643. int tweak = x.m_exponent & 1;
  644. /* Use the system’s float inversion to approximate 1/sqrt(x). First
  645. * we construct a float in the [1..4[ range that has roughly the same
  646. * mantissa as our real. Its exponent is 0 or 1, depending on the
  647. * parity of x’s exponent. The final exponent is 0, -1 or -2. We use
  648. * the final exponent and final mantissa to pre-fill the result. */
  649. union { float f; uint32_t x; } u = { 1.0f };
  650. u.x += tweak << 23;
  651. u.x |= x.m_mantissa[0] >> 9;
  652. u.f = 1.0f / sqrtf(u.f);
  653. real ret;
  654. ret.m_mantissa.resize(x.bigit_count());
  655. ret.m_mantissa[0] = u.x << 9;
  656. ret.m_exponent = -(x.m_exponent - tweak) / 2 + (u.x >> 23) - 0x7f;
  657. /* FIXME: 1+log2(bigit_count()) steps of Newton-Raphson seems to be enough for
  658. * convergence, but this hasn’t been checked seriously. */
  659. for (int i = 1; i <= x.bigit_count(); i *= 2)
  660. {
  661. ret = ret * (real::R_3() - ret * ret * x);
  662. --ret.m_exponent;
  663. }
  664. return ret * x;
  665. }
  666. template<> real cbrt(real const &x)
  667. {
  668. /* if zero, return x */
  669. if (x.is_zero())
  670. return x;
  671. int tweak = x.m_exponent % 3;
  672. if (tweak < 0)
  673. tweak += 3;
  674. /* Use the system’s float inversion to approximate cbrt(x). First
  675. * we construct a float in the [1..8[ range that has roughly the same
  676. * mantissa as our real. Its exponent is 0, 1 or 2, depending on the
  677. * value of x. The final exponent is 0 or 1 (special case). We use
  678. * the final exponent and final mantissa to pre-fill the result. */
  679. union { float f; uint32_t x; } u = { 1.0f };
  680. u.x += tweak << 23;
  681. u.x |= x.m_mantissa[0] >> 9;
  682. u.f = powf(u.f, 1.f / 3);
  683. real ret;
  684. ret.m_mantissa.resize(x.bigit_count());
  685. ret.m_mantissa[0] = u.x << 9;
  686. ret.m_exponent = (x.m_exponent - tweak) / 3 + (u.x >> 23) - 0x7f;
  687. ret.m_sign = x.m_sign;
  688. /* FIXME: 1+log2(bigit_count()) steps of Newton-Raphson seems to be enough
  689. * for convergence, but this hasn’t been checked seriously. */
  690. real third = inverse(real::R_3());
  691. for (int i = 1; i <= x.bigit_count(); i *= 2)
  692. {
  693. ret = third * (x / (ret * ret) + (ret * 2));
  694. }
  695. return ret;
  696. }
  697. template<> real pow(real const &x, real const &y)
  698. {
  699. /* Shortcuts for degenerate cases */
  700. if (!y)
  701. return real::R_1();
  702. if (!x)
  703. return real::R_0();
  704. /* Small integer exponent: use exponentiation by squaring */
  705. int64_t int_y = (int64_t)y;
  706. if (y == (real)int_y)
  707. {
  708. real ret = real::R_1();
  709. real x_n = int_y > 0 ? x : inverse(x);
  710. while (int_y) /* Can be > 0 or < 0 */
  711. {
  712. if (int_y & 1)
  713. ret *= x_n;
  714. x_n *= x_n;
  715. int_y /= 2;
  716. }
  717. return ret;
  718. }
  719. /* If x is positive, nothing special to do. */
  720. if (x > real::R_0())
  721. return exp(y * log(x));
  722. /* XXX: manpage for pow() says “If x is a finite value less than 0,
  723. * and y is a finite noninteger, a domain error occurs, and a NaN is
  724. * returned”. We check whether y is closer to an even number or to
  725. * an odd number and return something reasonable. */
  726. real round_y = round(y);
  727. bool is_odd = round_y / 2 == round(round_y / 2);
  728. return is_odd ? exp(y * log(-x)) : -exp(y * log(-x));
  729. }
  730. /* A fast factorial implementation for small numbers. An optional
  731. * step argument allows to compute double factorials (i.e. with
  732. * only the odd or the even terms. */
  733. static real fast_fact(int x, int step = 1)
  734. {
  735. if (x < step)
  736. return 1;
  737. if (x == step)
  738. return x;
  739. unsigned int start = (x + step - 1) % step + 1;
  740. real ret(start);
  741. uint64_t multiplier = 1;
  742. for (int i = start, exponent = 0;;)
  743. {
  744. if (i >= x)
  745. return ldexp(ret * multiplier, exponent);
  746. i += step;
  747. /* Accumulate the power of two part in the exponent */
  748. unsigned int tmp = i;
  749. while ((tmp & 1) == 0)
  750. {
  751. tmp >>= 1;
  752. exponent++;
  753. }
  754. /* Accumulate the other factors in the multiplier */
  755. if (multiplier * tmp / tmp != multiplier)
  756. {
  757. ret *= multiplier;
  758. multiplier = 1;
  759. }
  760. multiplier *= tmp;
  761. }
  762. }
  763. template<> real gamma(real const &x)
  764. {
  765. /* We use Spouge’s formula. FIXME: precision is far from acceptable,
  766. * especially with large values. We need to compute this with higher
  767. * precision values in order to attain the desired accuracy. It might
  768. * also be useful to sort the ck values by decreasing absolute value
  769. * and do the addition in this order. */
  770. int a = (int)ceilf(logf(2) / logf(2 * F_PI) * x.total_bits());
  771. real ret = sqrt(real::R_PI() * 2);
  772. real fact_k_1 = real::R_1();
  773. for (int k = 1; k < a; k++)
  774. {
  775. real a_k = (real)(a - k);
  776. real ck = pow(a_k, (real)((float)k - 0.5)) * exp(a_k)
  777. / (fact_k_1 * (x + (real)(k - 1)));
  778. ret += ck;
  779. fact_k_1 *= (real)-k;
  780. }
  781. ret *= pow(x + (real)(a - 1), x - (real::R_1() / 2));
  782. ret *= exp(-x - (real)(a - 1));
  783. return ret;
  784. }
  785. template<> real fabs(real const &x)
  786. {
  787. real ret = x;
  788. ret.m_sign = false;
  789. return ret;
  790. }
  791. template<> real abs(real const &x)
  792. {
  793. return fabs(x);
  794. }
  795. template<> real fract(real const &x)
  796. {
  797. return x - floor(x);
  798. }
  799. template<> real degrees(real const &x)
  800. {
  801. /* FIXME: need to recompute this for different mantissa sizes */
  802. static real mul = real(180) * real::R_1_PI();
  803. return x * mul;
  804. }
  805. template<> real radians(real const &x)
  806. {
  807. /* FIXME: need to recompute this for different mantissa sizes */
  808. static real mul = real::R_PI() / real(180);
  809. return x * mul;
  810. }
  811. static real fast_log(real const &x)
  812. {
  813. /* This fast log method is tuned to work on the [1..2] range and
  814. * no effort whatsoever was made to improve convergence outside this
  815. * domain of validity. It can converge pretty fast, provided we use
  816. * the following variable substitutions:
  817. * y = sqrt(x)
  818. * z = (y - 1) / (y + 1)
  819. *
  820. * And the following identities:
  821. * ln(x) = 2 ln(y)
  822. * = 2 ln((1 + z) / (1 - z))
  823. * = 4 z (1 + z^2 / 3 + z^4 / 5 + z^6 / 7...)
  824. *
  825. * Any additional sqrt() call would halve the convergence time, but
  826. * would also impact the final precision. For now we stick with one
  827. * sqrt() call. */
  828. real y = sqrt(x);
  829. real z = (y - real::R_1()) / (y + real::R_1()), z2 = z * z, zn = z2;
  830. real sum = real::R_1();
  831. for (int i = 3; ; i += 2)
  832. {
  833. real newsum = sum + zn / (real)i;
  834. if (newsum == sum)
  835. break;
  836. sum = newsum;
  837. zn *= z2;
  838. }
  839. return z * sum * 4;
  840. }
  841. template<> real log(real const &x)
  842. {
  843. /* Strategy for log(x): if x = 2^E*M then log(x) = E log(2) + log(M),
  844. * with the property that M is in [1..2[, so fast_log() applies here. */
  845. if (x.is_negative() || x.is_zero())
  846. return real::R_NAN();
  847. real tmp(x);
  848. tmp.m_exponent = 0;
  849. return real(x.m_exponent) * real::R_LN2() + fast_log(tmp);
  850. }
  851. template<> real log2(real const &x)
  852. {
  853. /* Strategy for log2(x): see log(x). */
  854. if (x.is_negative() || x.is_zero())
  855. return real::R_NAN();
  856. real tmp(x);
  857. tmp.m_exponent = 0;
  858. return real(x.m_exponent) + fast_log(tmp) * real::R_LOG2E();
  859. }
  860. template<> real log10(real const &x)
  861. {
  862. return log(x) * real::R_LOG10E();
  863. }
  864. static real fast_exp_sub(real const &x, real const &y)
  865. {
  866. /* This fast exp method is tuned to work on the [-1..1] range and
  867. * no effort whatsoever was made to improve convergence outside this
  868. * domain of validity. The argument y is used for cases where we
  869. * don’t want the leading 1 in the Taylor series. */
  870. real ret = real::R_1() - y, xn = x;
  871. int i = 1;
  872. for (;;)
  873. {
  874. real newret = ret + xn;
  875. if (newret == ret)
  876. break;
  877. ret = newret * ++i;
  878. xn *= x;
  879. }
  880. return ret / fast_fact(i);
  881. }
  882. template<> real exp(real const &x)
  883. {
  884. /* Strategy for exp(x): the Taylor series does not converge very fast
  885. * with large positive or negative values.
  886. *
  887. * However, since the result is going to be in the form M*2^E, we first
  888. * try to predict a value for E, which is approximately:
  889. * E ≈ log2(exp(x)) = x / log(2)
  890. *
  891. * Let E0 be an integer close to x / log(2). We need to find a value x0
  892. * such that exp(x) = 2^E0 * exp(x0). We get x0 = x - E0 log(2).
  893. *
  894. * Thus the final algorithm:
  895. * int E0 = x / log(2)
  896. * real x0 = x - E0 log(2)
  897. * real x1 = exp(x0)
  898. * return x1 * 2^E0
  899. */
  900. real::exponent_t e0 = x / real::R_LN2();
  901. real x0 = x - (real)e0 * real::R_LN2();
  902. real x1 = fast_exp_sub(x0, real::R_0());
  903. x1.m_exponent += e0;
  904. return x1;
  905. }
  906. template<> real exp2(real const &x)
  907. {
  908. /* Strategy for exp2(x): see strategy in exp(). */
  909. real::exponent_t e0 = x;
  910. real x0 = x - (real)e0;
  911. real x1 = fast_exp_sub(x0 * real::R_LN2(), real::R_0());
  912. x1.m_exponent += e0;
  913. return x1;
  914. }
  915. template<> real erf(real const &x)
  916. {
  917. /* Strategy for erf(x):
  918. * - if x<0, erf(x) = -erf(-x)
  919. * - if x<7, erf(x) = sum((-1)^n·x^(2n+1)/((2n+1)·n!))/sqrt(π/4)
  920. * - if x≥7, erf(x) = 1+exp(-x²)/(x·sqrt(π))·sum((-1)^n·(2n-1)!!/(2x²)^n
  921. *
  922. * FIXME: do not compute factorials at each iteration, accumulate
  923. * them instead (see fast_exp_sub).
  924. * FIXME: For a potentially faster implementation, see “Expanding the
  925. * Error Function erf(z)” at:
  926. * http://www.mathematica-journal.com/2014/11/on-burmanns-theorem-and-its-application-to-problems-of-linear-and-nonlinear-heat-transfer-and-diffusion/#more-39602/
  927. */
  928. if (x.is_negative())
  929. return -erf(-x);
  930. real sum = real::R_0();
  931. real x2 = x * x;
  932. /* FIXME: this test is inefficient; the series converges slowly for x≥1 */
  933. if (x < real(7))
  934. {
  935. real xn = x, xmul = x2;
  936. for (int n = 0;; ++n, xn *= xmul)
  937. {
  938. real tmp = xn / (fast_fact(n) * (2 * n + 1));
  939. real newsum = (n & 1) ? sum - tmp : sum + tmp;
  940. if (newsum == sum)
  941. break;
  942. sum = newsum;
  943. }
  944. return sum * real::R_2_SQRTPI();
  945. }
  946. else
  947. {
  948. real xn = real::R_1(), xmul = inverse(x2 + x2);
  949. /* FIXME: this does not converge well! We need to stop at 30
  950. * iterations and sacrifice some accuracy. */
  951. for (int n = 0; n < 30; ++n, xn *= xmul)
  952. {
  953. real tmp = xn * fast_fact(n * 2 - 1, 2);
  954. real newsum = (n & 1) ? sum - tmp : sum + tmp;
  955. if (newsum == sum)
  956. break;
  957. sum = newsum;
  958. }
  959. return real::R_1() - exp(-x2) / (x * sqrt(real::R_PI())) * sum;
  960. }
  961. }
  962. template<> real sinh(real const &x)
  963. {
  964. /* We cannot always use (exp(x)-exp(-x))/2 because we'll lose
  965. * accuracy near zero. We only use this identity for |x|>0.5. If
  966. * |x|<=0.5, we compute exp(x)-1 and exp(-x)-1 instead. */
  967. bool near_zero = (fabs(x) < real::R_1() / 2);
  968. real x1 = near_zero ? fast_exp_sub(x, real::R_1()) : exp(x);
  969. real x2 = near_zero ? fast_exp_sub(-x, real::R_1()) : exp(-x);
  970. return (x1 - x2) / 2;
  971. }
  972. template<> real tanh(real const &x)
  973. {
  974. /* See sinh() for the strategy here */
  975. bool near_zero = (fabs(x) < real::R_1() / 2);
  976. real x1 = near_zero ? fast_exp_sub(x, real::R_1()) : exp(x);
  977. real x2 = near_zero ? fast_exp_sub(-x, real::R_1()) : exp(-x);
  978. real x3 = near_zero ? x1 + x2 + real::R_2() : x1 + x2;
  979. return (x1 - x2) / x3;
  980. }
  981. template<> real cosh(real const &x)
  982. {
  983. /* No need to worry about accuracy here; maybe the last bit is slightly
  984. * off, but that's about it. */
  985. return (exp(x) + exp(-x)) / 2;
  986. }
  987. template<> real frexp(real const &x, real::exponent_t *exp)
  988. {
  989. if (!x)
  990. {
  991. *exp = 0;
  992. return x;
  993. }
  994. /* FIXME: check that this works */
  995. *exp = x.m_exponent;
  996. real ret = x;
  997. ret.m_exponent = 0;
  998. return ret;
  999. }
  1000. template<> real ldexp(real const &x, real::exponent_t exp)
  1001. {
  1002. real ret = x;
  1003. if (ret) /* Only do something if non-zero */
  1004. ret.m_exponent += exp;
  1005. return ret;
  1006. }
  1007. template<> real modf(real const &x, real *iptr)
  1008. {
  1009. real absx = fabs(x);
  1010. real tmp = floor(absx);
  1011. *iptr = copysign(tmp, x);
  1012. return copysign(absx - tmp, x);
  1013. }
  1014. template<> real nextafter(real const &x, real const &y)
  1015. {
  1016. /* Linux manpage: “If x equals y, the functions return y.” */
  1017. if (x == y)
  1018. return y;
  1019. /* Ensure x is positive. */
  1020. if (x.is_negative())
  1021. return -nextafter(-x, -y);
  1022. /* FIXME: broken for now */
  1023. real ulp = ldexp(x, -x.total_bits());
  1024. return x < y ? x + ulp : x - ulp;
  1025. }
  1026. template<> real copysign(real const &x, real const &y)
  1027. {
  1028. real ret = x;
  1029. ret.m_sign = y.m_sign;
  1030. return ret;
  1031. }
  1032. template<> real floor(real const &x)
  1033. {
  1034. /* Strategy for floor(x):
  1035. * - if negative, return -ceil(-x)
  1036. * - if zero or negative zero, return x
  1037. * - if less than one, return zero
  1038. * - otherwise, if e is the exponent, clear all bits except the
  1039. * first e. */
  1040. if (x < -real::R_0())
  1041. return -ceil(-x);
  1042. if (!x)
  1043. return x;
  1044. if (x < real::R_1())
  1045. return real::R_0();
  1046. real ret = x;
  1047. real::exponent_t exponent = x.m_exponent;
  1048. for (int i = 0; i < x.bigit_count(); ++i)
  1049. {
  1050. if (exponent <= 0)
  1051. ret.m_mantissa[i] = 0;
  1052. else if (exponent < real::bigit_bits())
  1053. ret.m_mantissa[i] &= ~((1 << (real::bigit_bits() - exponent)) - 1);
  1054. exponent -= real::bigit_bits();
  1055. }
  1056. return ret;
  1057. }
  1058. template<> real ceil(real const &x)
  1059. {
  1060. /* Strategy for ceil(x):
  1061. * - if negative, return -floor(-x)
  1062. * - if x == floor(x), return x
  1063. * - otherwise, return floor(x) + 1 */
  1064. if (x < -real::R_0())
  1065. return -floor(-x);
  1066. real ret = floor(x);
  1067. if (ret < x)
  1068. ret += real::R_1();
  1069. return ret;
  1070. }
  1071. template<> real round(real const &x)
  1072. {
  1073. if (x < real::R_0())
  1074. return -round(-x);
  1075. return floor(x + (real::R_1() / 2));
  1076. }
  1077. template<> real fmod(real const &x, real const &y)
  1078. {
  1079. if (!y)
  1080. return real::R_0(); /* FIXME: return NaN */
  1081. if (!x)
  1082. return x;
  1083. real tmp = round(x / y);
  1084. return x - tmp * y;
  1085. }
  1086. template<> real sin(real const &x)
  1087. {
  1088. bool switch_sign = x.is_negative();
  1089. real absx = fmod(fabs(x), real::R_PI() * 2);
  1090. if (absx > real::R_PI())
  1091. {
  1092. absx -= real::R_PI();
  1093. switch_sign = !switch_sign;
  1094. }
  1095. if (absx > real::R_PI_2())
  1096. absx = real::R_PI() - absx;
  1097. real ret = real::R_0(), fact = real::R_1(), xn = absx, mx2 = -absx * absx;
  1098. int i = 1;
  1099. for (;;)
  1100. {
  1101. real newret = ret + xn;
  1102. if (newret == ret)
  1103. break;
  1104. ret = newret * ((i + 1) * (i + 2));
  1105. xn *= mx2;
  1106. i += 2;
  1107. }
  1108. ret /= fast_fact(i);
  1109. /* Propagate sign */
  1110. ret.m_sign ^= switch_sign;
  1111. return ret;
  1112. }
  1113. template<> real cos(real const &x)
  1114. {
  1115. return sin(real::R_PI_2() - x);
  1116. }
  1117. template<> real tan(real const &x)
  1118. {
  1119. /* Constrain input to [-π,π] */
  1120. real y = fmod(x, real::R_PI());
  1121. /* Constrain input to [-π/2,π/2] */
  1122. if (y < -real::R_PI_2())
  1123. y += real::R_PI();
  1124. else if (y > real::R_PI_2())
  1125. y -= real::R_PI();
  1126. /* In [-π/4,π/4] return sin/cos */
  1127. if (fabs(y) <= real::R_PI_4())
  1128. return sin(y) / cos(y);
  1129. /* Otherwise, return cos/sin */
  1130. if (y > real::R_0())
  1131. y = real::R_PI_2() - y;
  1132. else
  1133. y = -real::R_PI_2() - y;
  1134. return cos(y) / sin(y);
  1135. }
  1136. static inline real asinacos(real const &x, int is_asin)
  1137. {
  1138. /* Strategy for asin(): in [-0.5..0.5], use a Taylor series around
  1139. * zero. In [0.5..1], use asin(x) = π/2 - 2*asin(sqrt((1-x)/2)), and
  1140. * in [-1..-0.5] just revert the sign.
  1141. * Strategy for acos(): use acos(x) = π/2 - asin(x) and try not to
  1142. * lose the precision around x=1. */
  1143. real absx = fabs(x);
  1144. int around_zero = (absx < (real::R_1() / 2));
  1145. if (!around_zero)
  1146. absx = sqrt((real::R_1() - absx) / 2);
  1147. real ret = absx, xn = absx, x2 = absx * absx, fact1 = 2, fact2 = 1;
  1148. for (int i = 1; ; ++i)
  1149. {
  1150. xn *= x2;
  1151. real mul = (real)(2 * i + 1);
  1152. real newret = ret + ldexp(fact1 * xn / (mul * fact2), -2 * i);
  1153. if (newret == ret)
  1154. break;
  1155. ret = newret;
  1156. fact1 *= (real)((2 * i + 1) * (2 * i + 2));
  1157. fact2 *= (real)((i + 1) * (i + 1));
  1158. }
  1159. if (x.is_negative())
  1160. ret = -ret;
  1161. if (around_zero)
  1162. ret = is_asin ? ret : real::R_PI_2() - ret;
  1163. else
  1164. {
  1165. real adjust = x.is_negative() ? real::R_PI() : real::R_0();
  1166. if (is_asin)
  1167. ret = real::R_PI_2() - adjust - ret * 2;
  1168. else
  1169. ret = adjust + ret * 2;
  1170. }
  1171. return ret;
  1172. }
  1173. template<> real asin(real const &x)
  1174. {
  1175. return asinacos(x, 1);
  1176. }
  1177. template<> real acos(real const &x)
  1178. {
  1179. return asinacos(x, 0);
  1180. }
  1181. template<> real atan(real const &x)
  1182. {
  1183. /* Computing atan(x): we choose a different Taylor series depending on
  1184. * the value of x to help with convergence.
  1185. *
  1186. * If |x| < 0.5 we evaluate atan(y) near 0:
  1187. * atan(y) = y - y^3/3 + y^5/5 - y^7/7 + y^9/9 ...
  1188. *
  1189. * If 0.5 <= |x| < 1.5 we evaluate atan(1+y) near 0:
  1190. * atan(1+y) = π/4 + y/(1*2^1) - y^2/(2*2^1) + y^3/(3*2^2)
  1191. * - y^5/(5*2^3) + y^6/(6*2^3) - y^7/(7*2^4)
  1192. * + y^9/(9*2^5) - y^10/(10*2^5) + y^11/(11*2^6) ...
  1193. *
  1194. * If 1.5 <= |x| < 2 we evaluate atan(sqrt(3)+2y) near 0:
  1195. * atan(sqrt(3)+2y) = π/3 + 1/2 y - sqrt(3)/2 y^2/2
  1196. * + y^3/3 - sqrt(3)/2 y^4/4 + 1/2 y^5/5
  1197. * - 1/2 y^7/7 + sqrt(3)/2 y^8/8
  1198. * - y^9/9 + sqrt(3)/2 y^10/10 - 1/2 y^11/11
  1199. * + 1/2 y^13/13 - sqrt(3)/2 y^14/14
  1200. * + y^15/15 - sqrt(3)/2 y^16/16 + 1/2 y^17/17 ...
  1201. *
  1202. * If |x| >= 2 we evaluate atan(y) near +∞:
  1203. * atan(y) = π/2 - y^-1 + y^-3/3 - y^-5/5 + y^-7/7 - y^-9/9 ...
  1204. */
  1205. real absx = fabs(x);
  1206. if (absx < (real::R_1() / 2))
  1207. {
  1208. real ret = x, xn = x, mx2 = -x * x;
  1209. for (int i = 3; ; i += 2)
  1210. {
  1211. xn *= mx2;
  1212. real newret = ret + xn / (real)i;
  1213. if (newret == ret)
  1214. break;
  1215. ret = newret;
  1216. }
  1217. return ret;
  1218. }
  1219. real ret = 0;
  1220. if (absx < (real::R_3() / 2))
  1221. {
  1222. real y = real::R_1() - absx;
  1223. real yn = y, my2 = -y * y;
  1224. for (int i = 0; ; i += 2)
  1225. {
  1226. real newret = ret + ldexp(yn / (real)(2 * i + 1), -i - 1);
  1227. yn *= y;
  1228. newret += ldexp(yn / (real)(2 * i + 2), -i - 1);
  1229. yn *= y;
  1230. newret += ldexp(yn / (real)(2 * i + 3), -i - 2);
  1231. if (newret == ret)
  1232. break;
  1233. ret = newret;
  1234. yn *= my2;
  1235. }
  1236. ret = real::R_PI_4() - ret;
  1237. }
  1238. else if (absx < real::R_2())
  1239. {
  1240. real y = (absx - real::R_SQRT3()) / 2;
  1241. real yn = y, my2 = -y * y;
  1242. for (int i = 1; ; i += 6)
  1243. {
  1244. real newret = ret + ((yn / (real)i) / 2);
  1245. yn *= y;
  1246. newret -= (real::R_SQRT3() / 2) * yn / (real)(i + 1);
  1247. yn *= y;
  1248. newret += yn / (real)(i + 2);
  1249. yn *= y;
  1250. newret -= (real::R_SQRT3() / 2) * yn / (real)(i + 3);
  1251. yn *= y;
  1252. newret += (yn / (real)(i + 4)) / 2;
  1253. if (newret == ret)
  1254. break;
  1255. ret = newret;
  1256. yn *= my2;
  1257. }
  1258. ret = real::R_PI_3() + ret;
  1259. }
  1260. else
  1261. {
  1262. real y = inverse(absx);
  1263. real yn = y, my2 = -y * y;
  1264. ret = y;
  1265. for (int i = 3; ; i += 2)
  1266. {
  1267. yn *= my2;
  1268. real newret = ret + yn / (real)i;
  1269. if (newret == ret)
  1270. break;
  1271. ret = newret;
  1272. }
  1273. ret = real::R_PI_2() - ret;
  1274. }
  1275. /* Propagate sign */
  1276. ret.m_sign = x.m_sign;
  1277. return ret;
  1278. }
  1279. template<> real atan2(real const &y, real const &x)
  1280. {
  1281. if (!y)
  1282. {
  1283. if (!x.is_negative())
  1284. return y;
  1285. return y.is_negative() ? -real::R_PI() : real::R_PI();
  1286. }
  1287. if (!x)
  1288. {
  1289. return y.is_negative() ? -real::R_PI() : real::R_PI();
  1290. }
  1291. /* FIXME: handle the Inf and NaN cases */
  1292. real z = y / x;
  1293. real ret = atan(z);
  1294. if (x < real::R_0())
  1295. ret += (y > real::R_0()) ? real::R_PI() : -real::R_PI();
  1296. return ret;
  1297. }
  1298. /* Franke’s function, used as a test for interpolation methods */
  1299. template<> real franke(real const &x, real const &y)
  1300. {
  1301. /* Compute 9x and 9y */
  1302. real nx = x + x; nx += nx; nx += nx + x;
  1303. real ny = y + y; ny += ny; ny += ny + y;
  1304. /* Temporary variables for the formula */
  1305. real a = nx - real::R_2();
  1306. real b = ny - real::R_2();
  1307. real c = nx + real::R_1();
  1308. real d = ny + real::R_1();
  1309. real e = nx - real(7);
  1310. real f = ny - real::R_3();
  1311. real g = nx - real(4);
  1312. real h = ny - real(7);
  1313. return exp(-(a * a + b * b) * real(0.25)) * real(0.75)
  1314. + exp(-(c * c / real(49) + d * d / real::R_10())) * real(0.75)
  1315. + exp(-(e * e + f * f) * real(0.25)) * real(0.5)
  1316. - exp(-(g * g + h * h)) / real(5);
  1317. }
  1318. /* The Peaks example function from Matlab */
  1319. template<> real peaks(real const &x, real const &y)
  1320. {
  1321. real x2 = x * x;
  1322. real y2 = y * y;
  1323. /* 3 * (1-x)^2 * exp(-x^2 - (y+1)^2) */
  1324. real ret = real::R_3()
  1325. * (x2 - x - x + real::R_1())
  1326. * exp(- x2 - y2 - y - y - real::R_1());
  1327. /* -10 * (x/5 - x^3 - y^5) * exp(-x^2 - y^2) */
  1328. ret -= (x + x - real::R_10() * (x2 * x + y2 * y2 * y)) * exp(-x2 - y2);
  1329. /* -1/3 * exp(-(x+1)^2 - y^2) */
  1330. ret -= exp(-x2 - x - x - real::R_1() - y2) / real::R_3();
  1331. return ret;
  1332. }
  1333. template<>
  1334. std::ostream& operator <<(std::ostream &s, real const &x)
  1335. {
  1336. bool hex = (s.flags() & std::ios_base::basefield) == std::ios_base::hex;
  1337. s << (hex ? x.xstr() : x.str((int)s.precision()));
  1338. return s;
  1339. }
  1340. template<> std::string real::str(int ndigits) const
  1341. {
  1342. std::stringstream ss;
  1343. real x = *this;
  1344. if (x.is_negative())
  1345. {
  1346. ss << '-';
  1347. x = -x;
  1348. }
  1349. if (!x)
  1350. {
  1351. ss << '0';
  1352. return ss.str();
  1353. }
  1354. // Normalise x so that mantissa is in [1..9.999]
  1355. // FIXME: better use int64_t when the cast is implemented
  1356. // FIXME: does not work with R_MAX and probably R_MIN
  1357. int exponent = ceil(log10(x));
  1358. x *= pow(R_10(), -(real)exponent);
  1359. if (ndigits < 1)
  1360. ndigits = 1;
  1361. // Add a bias to simulate some naive rounding
  1362. x += real(4.99f) * pow(R_10(), -(real)(ndigits + 1));
  1363. if (x < R_1())
  1364. {
  1365. x *= R_10();
  1366. exponent--;
  1367. }
  1368. // Print digits
  1369. for (int i = 0; i < ndigits; ++i)
  1370. {
  1371. int digit = (int)floor(x);
  1372. ss << (char)('0' + digit);
  1373. if (i == 0)
  1374. ss << '.';
  1375. x -= real(digit);
  1376. x *= R_10();
  1377. }
  1378. // Remove trailing zeroes
  1379. std::string ret = ss.str();
  1380. ss.str("");
  1381. size_t end = ret.find_last_not_of('0');
  1382. if (end != std::string::npos)
  1383. ss << ret.substr(0, end + 1);
  1384. // Print exponent information
  1385. if (exponent)
  1386. ss << 'e' << (exponent >= 0 ? '+' : '-') << lol::abs(exponent);
  1387. return ss.str();
  1388. }
  1389. template<> std::string real::xstr() const
  1390. {
  1391. std::stringstream ss;
  1392. if (is_negative())
  1393. ss << '-';
  1394. ss << "0x1." << std::hex << std::setfill('0');
  1395. for (int i = 0; i < bigit_count(); ++i)
  1396. ss << std::setw(8) << m_mantissa[i];
  1397. ss << std::dec;
  1398. // Remove trailing zeroes
  1399. std::string ret = ss.str();
  1400. ss.str("");
  1401. size_t end = ret.find_last_not_of('0');
  1402. if (end != std::string::npos)
  1403. ss << ret.substr(0, end + 1);
  1404. ss << 'p' << m_exponent;
  1405. return ss.str();
  1406. }
  1407. static real load_min()
  1408. {
  1409. real ret = 1;
  1410. return ldexp(ret, std::numeric_limits<real::exponent_t>::min());
  1411. }
  1412. static real load_max()
  1413. {
  1414. /* FIXME: the last bits of the mantissa are not properly handled in this
  1415. * code! So we fallback to a slow but exact method. */
  1416. #if 0
  1417. real ret = 1;
  1418. ret = ldexp(ret, real::TOTAL_BITS - 1) - ret;
  1419. return ldexp(ret, real::EXPONENT_BIAS + 2 - real::TOTAL_BITS);
  1420. #endif
  1421. /* Generates 0x1.ffff..ffffp18446744073709551615 */
  1422. char str[160];
  1423. std::sprintf(str, "0x1.%llx%llx%llx%llx%llx%llx%llx%llxp%lld",
  1424. -1ll, -1ll, -1ll, -1ll, -1ll, -1ll, -1ll, -1ll,
  1425. (long long int)std::numeric_limits<int64_t>::max());
  1426. return real(str);
  1427. }
  1428. static real load_pi()
  1429. {
  1430. /* Approximate π using Machin’s formula: 16*atan(1/5)-4*atan(1/239) */
  1431. real ret = 0, x0 = 5, x1 = 239;
  1432. real const m0 = -x0 * x0, m1 = -x1 * x1, r16 = 16, r4 = 4;
  1433. for (int i = 1; ; i += 2)
  1434. {
  1435. real newret = ret + r16 / (x0 * (real)i) - r4 / (x1 * (real)i);
  1436. if (newret == ret)
  1437. break;
  1438. ret = newret;
  1439. x0 *= m0;
  1440. x1 *= m1;
  1441. }
  1442. return ret;
  1443. }
  1444. } /* namespace lol */