Pārlūkot izejas kodu

* Test stuff for the Rubik's cube colour reduction.

git-svn-id: file:///srv/caca.zoy.org/var/lib/svn/research@2677 92316355-f0b4-4df1-b90c-862c8a59935f
master
sam pirms 16 gadiem
vecāks
revīzija
df10889be7
7 mainītis faili ar 795 papildinājumiem un 0 dzēšanām
  1. +2
    -0
      2008-rubik/.gitignore
  2. +4
    -0
      2008-rubik/colorcube/Makefile
  3. +123
    -0
      2008-rubik/colorcube/tb.c
  4. +103
    -0
      2008-rubik/colorcube/tb.h
  5. +325
    -0
      2008-rubik/colorcube/trackball.c
  6. +85
    -0
      2008-rubik/colorcube/trackball.h
  7. +153
    -0
      2008-rubik/colorcube/visu.c

+ 2
- 0
2008-rubik/.gitignore Parādīt failu

@@ -0,0 +1,2 @@
*.o
colorcube/visu

+ 4
- 0
2008-rubik/colorcube/Makefile Parādīt failu

@@ -0,0 +1,4 @@

visu: visu.c tb.c trackball.c
$(CC) $^ -o $@ -lGL -lglut


+ 123
- 0
2008-rubik/colorcube/tb.c Parādīt failu

@@ -0,0 +1,123 @@
/*
* Simple trackball-like motion adapted (ripped off) from projtex.c
* (written by David Yu and David Blythe). See the SIGGRAPH '96
* Advanced OpenGL course notes.
*/

#include <math.h>
#include <assert.h>

#include <GL/glut.h>

#include "tb.h"
#include "trackball.h"

/* globals */
static GLuint tb_lasttime;

float curquat[4];
float lastquat[4];
int beginx, beginy;

static GLuint tb_width;
static GLuint tb_height;

static GLint tb_button = -1;
static GLboolean tb_tracking = GL_FALSE;
static GLboolean tb_animate = GL_TRUE;

static void
_tbAnimate(void)
{
add_quats(lastquat, curquat, curquat);
glutPostRedisplay();
}

static void
_tbStartMotion(int x, int y, int time)
{
assert(tb_button != -1);

glutIdleFunc(0);
tb_tracking = GL_TRUE;
tb_lasttime = time;
beginx = x;
beginy = y;
}

static void
_tbStopMotion(unsigned time)
{
assert(tb_button != -1);

tb_tracking = GL_FALSE;

if (time == tb_lasttime && tb_animate) {
glutIdleFunc(_tbAnimate);
} else {
if (tb_animate) {
glutIdleFunc(0);
}
}
}

void
tbAnimate(GLboolean animate)
{
tb_animate = animate;
}

void
tbInit(GLuint button)
{
tb_button = button;
trackball(curquat, 0.0, 0.0, 0.0, 0.0);
}

void
tbMatrix(void)
{
GLfloat m[4][4];

assert(tb_button != -1);
build_rotmatrix(m, curquat);
glMultMatrixf(&m[0][0]);
}

void
tbReshape(int width, int height)
{
assert(tb_button != -1);

tb_width = width;
tb_height = height;
}

void
tbMouse(int button, int state, int x, int y)
{
assert(tb_button != -1);

if (state == GLUT_DOWN && button == tb_button)
_tbStartMotion(x, y, glutGet(GLUT_ELAPSED_TIME));
else if (state == GLUT_UP && button == tb_button)
_tbStopMotion(glutGet(GLUT_ELAPSED_TIME));
}

void
tbMotion(int x, int y)
{
if (tb_tracking) {
trackball(lastquat,
(2.0 * beginx - tb_width) / tb_width,
(tb_height - 2.0 * beginy) / tb_height,
(2.0 * x - tb_width) / tb_width,
(tb_height - 2.0 * y) / tb_height
);
beginx = x;
beginy = y;
tb_animate = 1;
tb_lasttime = glutGet(GLUT_ELAPSED_TIME);
_tbAnimate();
}
}

+ 103
- 0
2008-rubik/colorcube/tb.h Parādīt failu

@@ -0,0 +1,103 @@
/*
* Simple trackball-like motion adapted (ripped off) from projtex.c
* (written by David Yu and David Blythe). See the SIGGRAPH '96
* Advanced OpenGL course notes.
*
*
* Usage:
*
* o call tbInit() in before any other tb call
* o call tbReshape() from the reshape callback
* o call tbMatrix() to get the trackball matrix rotation
* o call tbStartMotion() to begin trackball movememt
* o call tbStopMotion() to stop trackball movememt
* o call tbMotion() from the motion callback
* o call tbAnimate(GL_TRUE) if you want the trackball to continue
* spinning after the mouse button has been released
* o call tbAnimate(GL_FALSE) if you want the trackball to stop
* spinning after the mouse button has been released
*
* Typical setup:
*
*
void
init(void)
{
tbInit(GLUT_MIDDLE_BUTTON);
tbAnimate(GL_TRUE);
. . .
}

void
reshape(int width, int height)
{
tbReshape(width, height);
. . .
}

void
display(void)
{
glPushMatrix();

tbMatrix();
. . . draw the scene . . .

glPopMatrix();
}

void
mouse(int button, int state, int x, int y)
{
tbMouse(button, state, x, y);
. . .
}

void
motion(int x, int y)
{
tbMotion(x, y);
. . .
}

int
main(int argc, char** argv)
{
. . .
init();
glutReshapeFunc(reshape);
glutDisplayFunc(display);
glutMouseFunc(mouse);
glutMotionFunc(motion);
. . .
}
*
* */


/* functions */
#ifdef __cplusplus
extern "C" {
#endif

void
tbInit(GLuint button);

void
tbMatrix(void);

void
tbReshape(int width, int height);

void
tbMouse(int button, int state, int x, int y);

void
tbMotion(int x, int y);

void
tbAnimate(GLboolean animate);

#ifdef __cplusplus
}
#endif

+ 325
- 0
2008-rubik/colorcube/trackball.c Parādīt failu

@@ -0,0 +1,325 @@
/*
* (c) Copyright 1993, 1994, Silicon Graphics, Inc.
* ALL RIGHTS RESERVED
* Permission to use, copy, modify, and distribute this software for
* any purpose and without fee is hereby granted, provided that the above
* copyright notice appear in all copies and that both the copyright notice
* and this permission notice appear in supporting documentation, and that
* the name of Silicon Graphics, Inc. not be used in advertising
* or publicity pertaining to distribution of the software without specific,
* written prior permission.
*
* THE MATERIAL EMBODIED ON THIS SOFTWARE IS PROVIDED TO YOU "AS-IS"
* AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR OTHERWISE,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR
* FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL SILICON
* GRAPHICS, INC. BE LIABLE TO YOU OR ANYONE ELSE FOR ANY DIRECT,
* SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY
* KIND, OR ANY DAMAGES WHATSOEVER, INCLUDING WITHOUT LIMITATION,
* LOSS OF PROFIT, LOSS OF USE, SAVINGS OR REVENUE, OR THE CLAIMS OF
* THIRD PARTIES, WHETHER OR NOT SILICON GRAPHICS, INC. HAS BEEN
* ADVISED OF THE POSSIBILITY OF SUCH LOSS, HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE
* POSSESSION, USE OR PERFORMANCE OF THIS SOFTWARE.
*
* US Government Users Restricted Rights
* Use, duplication, or disclosure by the Government is subject to
* restrictions set forth in FAR 52.227.19(c)(2) or subparagraph
* (c)(1)(ii) of the Rights in Technical Data and Computer Software
* clause at DFARS 252.227-7013 and/or in similar or successor
* clauses in the FAR or the DOD or NASA FAR Supplement.
* Unpublished-- rights reserved under the copyright laws of the
* United States. Contractor/manufacturer is Silicon Graphics,
* Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-7311.
*
* OpenGL(TM) is a trademark of Silicon Graphics, Inc.
*/

/*
* Trackball code:
*
* Implementation of a virtual trackball.
* Implemented by Gavin Bell, lots of ideas from Thant Tessman and
* the August '88 issue of Siggraph's "Computer Graphics," pp. 121-129.
*
* Vector manip code:
*
* Original code from:
* David M. Ciemiewicz, Mark Grossman, Henry Moreton, and Paul Haeberli
*
* Much mucking with by:
* Gavin Bell
*/
#include <math.h>
#include "trackball.h"

/*
* This size should really be based on the distance from the center of
* rotation to the point on the object underneath the mouse. That
* point would then track the mouse as closely as possible. This is a
* simple example, though, so that is left as an Exercise for the
* Programmer.
*/
#define TRACKBALLSIZE (0.4f)

/*
* Local function prototypes (not defined in trackball.h)
*/
static float tb_project_to_sphere(float, float, float);
static void normalize_quat(float [4]);

static void
vzero(float *v)
{
v[0] = 0.0;
v[1] = 0.0;
v[2] = 0.0;
}

static void
vset(float *v, float x, float y, float z)
{
v[0] = x;
v[1] = y;
v[2] = z;
}

static void
vsub(const float *src1, const float *src2, float *dst)
{
dst[0] = src1[0] - src2[0];
dst[1] = src1[1] - src2[1];
dst[2] = src1[2] - src2[2];
}

static void
vcopy(const float *v1, float *v2)
{
register int i;
for (i = 0 ; i < 3 ; i++)
v2[i] = v1[i];
}

static void
vcross(const float *v1, const float *v2, float *cross)
{
float temp[3];

temp[0] = (v1[1] * v2[2]) - (v1[2] * v2[1]);
temp[1] = (v1[2] * v2[0]) - (v1[0] * v2[2]);
temp[2] = (v1[0] * v2[1]) - (v1[1] * v2[0]);
vcopy(temp, cross);
}

static float
vlength(const float *v)
{
return sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
}

static void
vscale(float *v, float div)
{
v[0] *= div;
v[1] *= div;
v[2] *= div;
}

static void
vnormal(float *v)
{
vscale(v,1.0f/vlength(v));
}

static float
vdot(const float *v1, const float *v2)
{
return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
}

static void
vadd(const float *src1, const float *src2, float *dst)
{
dst[0] = src1[0] + src2[0];
dst[1] = src1[1] + src2[1];
dst[2] = src1[2] + src2[2];
}

/*
* Ok, simulate a track-ball. Project the points onto the virtual
* trackball, then figure out the axis of rotation, which is the cross
* product of P1 P2 and O P1 (O is the center of the ball, 0,0,0)
* Note: This is a deformed trackball-- is a trackball in the center,
* but is deformed into a hyperbolic sheet of rotation away from the
* center. This particular function was chosen after trying out
* several variations.
*
* It is assumed that the arguments to this routine are in the range
* (-1.0 ... 1.0)
*/
void
trackball(float q[4], float p1x, float p1y, float p2x, float p2y)
{
float a[3]; /* Axis of rotation */
float phi; /* how much to rotate about axis */
float p1[3], p2[3], d[3];
float t;

if (p1x == p2x && p1y == p2y) {
/* Zero rotation */
vzero(q);
q[3] = 1.0;
return;
}

/*
* First, figure out z-coordinates for projection of P1 and P2 to
* deformed sphere
*/
vset(p1,p1x,p1y,tb_project_to_sphere(TRACKBALLSIZE,p1x,p1y));
vset(p2,p2x,p2y,tb_project_to_sphere(TRACKBALLSIZE,p2x,p2y));

/*
* Now, we want the cross product of P1 and P2
*/
vcross(p2,p1,a);

/*
* Figure out how much to rotate around that axis.
*/
vsub(p1,p2,d);
t = vlength(d) / (2.0f*TRACKBALLSIZE);

/*
* Avoid problems with out-of-control values...
*/
if (t > 1.0f) t = 1.0f;
if (t < -1.0f) t = -1.0f;
phi = 2.0f * asin(t);

axis_to_quat(a,phi,q);
}

/*
* Given an axis and angle, compute quaternion.
*/
void
axis_to_quat(float a[3], float phi, float q[4])
{
vnormal(a);
vcopy(a,q);
vscale(q,sin(phi/2.0f));
q[3] = cos(phi/2.0f);
}

/*
* Project an x,y pair onto a sphere of radius r OR a hyperbolic sheet
* if we are away from the center of the sphere.
*/
static float
tb_project_to_sphere(float r, float x, float y)
{
float d, t, z;

d = sqrt(x*x + y*y);
if (d < r * 0.70710678118654752440f) { /* Inside sphere */
z = sqrt(r*r - d*d);
} else { /* On hyperbola */
t = r / 1.41421356237309504880f;
z = t*t / d;
}
return z;
}

/*
* Given two rotations, e1 and e2, expressed as quaternion rotations,
* figure out the equivalent single rotation and stuff it into dest.
*
* This routine also normalizes the result every RENORMCOUNT times it is
* called, to keep error from creeping in.
*
* NOTE: This routine is written so that q1 or q2 may be the same
* as dest (or each other).
*/

#define RENORMCOUNT 97

void
add_quats(float q1[4], float q2[4], float dest[4])
{
static int count=0;
float t1[4], t2[4], t3[4];
float tf[4];

vcopy(q1,t1);
vscale(t1,q2[3]);

vcopy(q2,t2);
vscale(t2,q1[3]);

vcross(q2,q1,t3);
vadd(t1,t2,tf);
vadd(t3,tf,tf);
tf[3] = q1[3] * q2[3] - vdot(q1,q2);

dest[0] = tf[0];
dest[1] = tf[1];
dest[2] = tf[2];
dest[3] = tf[3];

if (++count > RENORMCOUNT) {
count = 0;
normalize_quat(dest);
}
}

/*
* Quaternions always obey: a^2 + b^2 + c^2 + d^2 = 1.0
* If they don't add up to 1.0, dividing by their magnitued will
* renormalize them.
*
* Note: See the following for more information on quaternions:
*
* - Shoemake, K., Animating rotation with quaternion curves, Computer
* Graphics 19, No 3 (Proc. SIGGRAPH'85), 245-254, 1985.
* - Pletinckx, D., Quaternion calculus as a basic tool in computer
* graphics, The Visual Computer 5, 2-13, 1989.
*/
static void
normalize_quat(float q[4])
{
int i;
float mag;

mag = (q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
for (i = 0; i < 4; i++) q[i] /= mag;
}

/*
* Build a rotation matrix, given a quaternion rotation.
*
*/
void
build_rotmatrix(float m[4][4], float q[4])
{
m[0][0] = 1.0f - 2.0f * (q[1] * q[1] + q[2] * q[2]);
m[0][1] = 2.0f * (q[0] * q[1] - q[2] * q[3]);
m[0][2] = 2.0f * (q[2] * q[0] + q[1] * q[3]);
m[0][3] = 0.0f;

m[1][0] = 2.0f * (q[0] * q[1] + q[2] * q[3]);
m[1][1]= 1.0f - 2.0f * (q[2] * q[2] + q[0] * q[0]);
m[1][2] = 2.0f * (q[1] * q[2] - q[0] * q[3]);
m[1][3] = 0.0f;

m[2][0] = 2.0f * (q[2] * q[0] - q[1] * q[3]);
m[2][1] = 2.0f * (q[1] * q[2] + q[0] * q[3]);
m[2][2] = 1.0f - 2.0f * (q[1] * q[1] + q[0] * q[0]);
m[2][3] = 0.0f;

m[3][0] = 0.0f;
m[3][1] = 0.0f;
m[3][2] = 0.0f;
m[3][3] = 1.0f;
}


+ 85
- 0
2008-rubik/colorcube/trackball.h Parādīt failu

@@ -0,0 +1,85 @@
/*
* (c) Copyright 1993, 1994, Silicon Graphics, Inc.
* ALL RIGHTS RESERVED
* Permission to use, copy, modify, and distribute this software for
* any purpose and without fee is hereby granted, provided that the above
* copyright notice appear in all copies and that both the copyright notice
* and this permission notice appear in supporting documentation, and that
* the name of Silicon Graphics, Inc. not be used in advertising
* or publicity pertaining to distribution of the software without specific,
* written prior permission.
*
* THE MATERIAL EMBODIED ON THIS SOFTWARE IS PROVIDED TO YOU "AS-IS"
* AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR OTHERWISE,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR
* FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL SILICON
* GRAPHICS, INC. BE LIABLE TO YOU OR ANYONE ELSE FOR ANY DIRECT,
* SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY
* KIND, OR ANY DAMAGES WHATSOEVER, INCLUDING WITHOUT LIMITATION,
* LOSS OF PROFIT, LOSS OF USE, SAVINGS OR REVENUE, OR THE CLAIMS OF
* THIRD PARTIES, WHETHER OR NOT SILICON GRAPHICS, INC. HAS BEEN
* ADVISED OF THE POSSIBILITY OF SUCH LOSS, HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE
* POSSESSION, USE OR PERFORMANCE OF THIS SOFTWARE.
*
* US Government Users Restricted Rights
* Use, duplication, or disclosure by the Government is subject to
* restrictions set forth in FAR 52.227.19(c)(2) or subparagraph
* (c)(1)(ii) of the Rights in Technical Data and Computer Software
* clause at DFARS 252.227-7013 and/or in similar or successor
* clauses in the FAR or the DOD or NASA FAR Supplement.
* Unpublished-- rights reserved under the copyright laws of the
* United States. Contractor/manufacturer is Silicon Graphics,
* Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-7311.
*
* OpenGL(TM) is a trademark of Silicon Graphics, Inc.
*/
/*
* trackball.h
* A virtual trackball implementation
* Written by Gavin Bell for Silicon Graphics, November 1988.
*/

#ifdef __cpluscplus
extern "C" {
#endif

/*
* Pass the x and y coordinates of the last and current positions of
* the mouse, scaled so they are from (-1.0 ... 1.0).
*
* The resulting rotation is returned as a quaternion rotation in the
* first paramater.
*/
void
trackball(float q[4], float p1x, float p1y, float p2x, float p2y);

/*
* Given two quaternions, add them together to get a third quaternion.
* Adding quaternions to get a compound rotation is analagous to adding
* translations to get a compound translation. When incrementally
* adding rotations, the first argument here should be the new
* rotation, the second and third the total rotation (which will be
* over-written with the resulting new total rotation).
*/
void
add_quats(float *q1, float *q2, float *dest);

/*
* A useful function, builds a rotation matrix in Matrix based on
* given quaternion.
*/
void
build_rotmatrix(float m[4][4], float q[4]);

/*
* This function computes a quaternion based on an axis (defined by
* the given vector) and an angle about which to rotate. The angle is
* expressed in radians. The result is put into the third argument.
*/
void
axis_to_quat(float a[3], float phi, float q[4]);

#ifdef __cpluscplus
}
#endif

+ 153
- 0
2008-rubik/colorcube/visu.c Parādīt failu

@@ -0,0 +1,153 @@
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

#include <GL/gl.h>
#include <GL/glut.h>

#include "tb.h"

int w_win = 640;
int h_win = 480;

static void setcamera(void)
{
glMatrixMode (GL_PROJECTION);
glLoadIdentity ();
gluPerspective(40, (float)w_win / (float)h_win, 1, 1000);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
gluLookAt(0.0, 0.0, (float)h_win / 200.0f, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
}

static void myinit(void)
{
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glClearColor(0.5, 0.5, 0.7, 0.0);
glColor3f(1.0, 1.0, 1.0);

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
glEnable(GL_DEPTH_TEST);
glShadeModel(GL_SMOOTH);

setcamera();

tbInit(GLUT_LEFT_BUTTON);
tbAnimate(GL_FALSE);
}

static void parsekey(unsigned char key, int x, int y)
{
switch (key)
{
case 27:
exit(0);
break;
}
}

static void motion(int x, int y)
{
tbMotion(x, y);
}

static void mouse(int button, int state, int x, int y)
{
tbMouse(button, state, x, y);
}

static void reshape(int w, int h)
{
glMatrixMode (GL_MODELVIEW);
glViewport (0, 0, w, h);
glLoadIdentity();

w_win = w;
h_win = h;
setcamera();

tbReshape(w_win, h_win);
}

#define F(x) ((x)*1.01 - 0.005)
#define CP glColor4f(x0,y0,z0,0.5); glVertex3f(y0,x0,z0)
#define BP glColor3f(0.0,0.0,0.0); glVertex3f(F(y0),F(x0),F(z0))
#define BLACK x0 = y0 = z0 = 0.0
#define RED x0 = 1.0; y0 = z0 = 0.0
//#define XRED x0 = 0.8; y0 = z0 = 0.0
#define XRED RED
#define GREEN y0 = 1.0; x0 = z0 = 0.0
//#define XGREEN y0 = 0.7; x0 = z0 = 0.0
#define XGREEN GREEN
#define BLUE z0 = 1.0; x0 = y0 = 0.0
//#define XBLUE x0 = 0.0; y0 = 0.0; z0 = 0.5
#define XBLUE BLUE
#define YELLOW x0 = y0 = 1.0; z0 = 0.0
#define CYAN y0 = z0 = 1.0; x0 = 0.0
#define MAGENTA x0 = z0 = 1.0; y0 = 0.0
#define WHITE x0 = y0 = z0 = 1.0

static void display(void)
{
float x0,y0,z0;

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

setcamera();

tbMatrix();

glPushMatrix();
glTranslatef(-.5, -.5, -.5);
// Bounding box
glBegin(GL_LINE_LOOP);
BLACK; CP; RED; CP; MAGENTA; CP; BLUE; CP;
CYAN; CP; WHITE; CP; YELLOW; CP; GREEN; CP;
glEnd();
glBegin(GL_LINES);
BLACK; CP; BLUE; CP;
GREEN; CP; CYAN; CP;
RED; CP; YELLOW; CP;
MAGENTA; CP; WHITE; CP;
glEnd();
// Our colour space
glBegin(GL_TRIANGLES); XRED; CP; XGREEN; CP; XBLUE; CP; glEnd();
glBegin(GL_TRIANGLES); XRED; CP; XGREEN; CP; YELLOW; CP; glEnd();
glBegin(GL_TRIANGLES); XRED; CP; XBLUE; CP; WHITE; CP; glEnd();
glBegin(GL_TRIANGLES); XRED; CP; YELLOW; CP; WHITE; CP; glEnd();
glBegin(GL_TRIANGLES); XBLUE; CP; XGREEN; CP; WHITE; CP; glEnd();
glBegin(GL_TRIANGLES); YELLOW; CP; XGREEN; CP; WHITE; CP; glEnd();
// Better edges
glBegin(GL_LINES);
XBLUE; BP; XRED; BP; YELLOW; BP; XRED; BP;
XBLUE; BP; XGREEN; BP; YELLOW; BP; XGREEN; BP;
XBLUE; BP; WHITE; BP; YELLOW; BP; WHITE; BP;
XRED; BP; XGREEN; BP;
XGREEN; BP; WHITE; BP;
WHITE; BP; XRED; BP;
glEnd();
glPopMatrix();

glutSwapBuffers();
}

int main(int argc, char *argv[])
{
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DEPTH | GLUT_RGB | GLUT_DOUBLE | GLUT_MULTISAMPLE);
glutInitWindowPosition(50, 50);
glutInitWindowSize(w_win, h_win);
glutCreateWindow("FTGL TEST");
glutDisplayFunc(display);
glutKeyboardFunc(parsekey);
glutMouseFunc(mouse);
glutMotionFunc(motion);
glutReshapeFunc(reshape);
glutIdleFunc(display);

myinit();
glutMainLoop();

return 0;
}


Notiek ielāde…
Atcelt
Saglabāt